Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures

S. Hronek; R. Suchánek

Archivum Mathematicum (2022)

  • Volume: 058, Issue: 5, page 329-338
  • ISSN: 0044-8753

Abstract

top
We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional T * M . We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional M , and describe the corresponding Hessian structures.

How to cite

top

Hronek, S., and Suchánek, R.. "Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures." Archivum Mathematicum 058.5 (2022): 329-338. <http://eudml.org/doc/298918>.

@article{Hronek2022,
abstract = {We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures.},
author = {Hronek, S., Suchánek, R.},
journal = {Archivum Mathematicum},
keywords = {Hessian structure; Lychagin-Rubtsov metric; Monge-Ampère structure; Monge-Ampère equation; Plücker embedding},
language = {eng},
number = {5},
pages = {329-338},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures},
url = {http://eudml.org/doc/298918},
volume = {058},
year = {2022},
}

TY - JOUR
AU - Hronek, S.
AU - Suchánek, R.
TI - Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 5
SP - 329
EP - 338
AB - We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures.
LA - eng
KW - Hessian structure; Lychagin-Rubtsov metric; Monge-Ampère structure; Monge-Ampère equation; Plücker embedding
UR - http://eudml.org/doc/298918
ER -

References

top
  1. Amari, S., Armstrong, J., 10.1016/j.difgeo.2014.01.001, Differential Geom. Appl. 33 (2014), 1–12. (2014) MR3183362DOI10.1016/j.difgeo.2014.01.001
  2. Banos, B., Integrable geometries and Monge-Ampèere equations, arXiv: Differential Geometry (2006). (2006) 
  3. Banos, B., 10.1016/j.geomphys.2006.06.005, J. Geom. Phys. 57 (3) (2007), 841–853. (2007) MR2275194DOI10.1016/j.geomphys.2006.06.005
  4. Banos, B., 10.1016/j.geomphys.2011.06.019, J. Geom. Phys. 61 (2011), no. 11, 2187–2198. (2011) MR2827118DOI10.1016/j.geomphys.2011.06.019
  5. Banos, B., 10.1016/j.geomphys.2011.06.019, J. Geom. Phys. 61 (2011), no. 11, 2187–2198. (2011) MR2827118DOI10.1016/j.geomphys.2011.06.019
  6. Banos, B., Rubtsov, V., Roulstone, I., 10.1088/1751-8113/49/24/244003, J. Phys A 49 (2016). (2016) MR3512079DOI10.1088/1751-8113/49/24/244003
  7. Delahaies, S., Complex and contact geometry in geophysical fluid dynamics, Ph.D. thesis, 01 2009. (2009) MR3697449
  8. Kosmann-Schwarzbach, Y., Rubtsov, V., 10.1007/s10440-009-9444-2, Acta Appl. Math. 109 (2010), no. 1, 101–135. (2010) MR2579885DOI10.1007/s10440-009-9444-2
  9. Kushner, A., Lychagin, V., Rubtsov, V., Contact geometry and nonlinear differential equations, Encyclopedia Math. Appl., Cambridge University Press, 2006. (2006) MR2352610
  10. Lychagin, V.V., 10.1070/RM1979v034n01ABEH002873, Russian Math. Surveys 34 (1979), no. 1, 149–180. (1979) MR0525652DOI10.1070/RM1979v034n01ABEH002873
  11. Lychagin, V.V., Roubtsov, V., Monge–Ampère Grassmannians, characteristic classes and all that, pp. 233–257, Springer International Publishing, Cham, 2019. (2019) MR3932304
  12. Lychagin, V.V., Rubtsov, V.N., Chekalov, I.V., A classification of Monge-Ampère equations, Ann. Sci. Éc. Norm. Supér. (4) Ser. 4, 26 (1993), no. 3, 281–308 (en). MR 94c:58229 (1993) MR1222276
  13. Roulstone, I., Banos, B., Gibbon, J.D., Roubtsov, V.N., Kähler geometry and Burgers’ vortices, (2009). (2009) 
  14. Rubtsov, V., Roulstone, I., 10.1098/rspa.2001.0779, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 1519–1531. (2001) MR1851013DOI10.1098/rspa.2001.0779
  15. Rubtsov, V. N., Roulstone, I., 10.1088/0305-4470/30/4/004, J. Phys. A 30 (1997), no. 4, L63–L68. (1997) MR1457975DOI10.1088/0305-4470/30/4/004
  16. Rubtsov, Volodya, Geometry of Monge-Ampère structures, pp. 95–156, Springer International Publishing, Cham, 2019. (2019) MR3932299
  17. Shima, Hirohiko, The geometry of Hessian structures, World Scientific, 2007. (2007) MR2293045
  18. Totaro, B., 10.1142/S0129167X04002338, Internat. J. Math. 15 (2004), no. 04, 369–391. (2004) MR2069684DOI10.1142/S0129167X04002338

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.