Carleson measures for weighted harmonic mixed norm spaces on bounded domains in
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1205-1216
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSavković, Ivana. "Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$." Czechoslovak Mathematical Journal 72.4 (2022): 1205-1216. <http://eudml.org/doc/298920>.
@article{Savković2022,
abstract = {We study weighted mixed norm spaces of harmonic functions defined on smoothly bounded domains in $\mathbb \{R\}^n$. Our principal result is a characterization of Carleson measures for these spaces. First, we obtain an equivalence of norms on these spaces. Then we give a necessary and sufficient condition for the embedding of the weighted harmonic mixed norm space into the corresponding mixed norm space.},
author = {Savković, Ivana},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic function; mixed norm space; Carleson measure},
language = {eng},
number = {4},
pages = {1205-1216},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/298920},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Savković, Ivana
TI - Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1205
EP - 1216
AB - We study weighted mixed norm spaces of harmonic functions defined on smoothly bounded domains in $\mathbb {R}^n$. Our principal result is a characterization of Carleson measures for these spaces. First, we obtain an equivalence of norms on these spaces. Then we give a necessary and sufficient condition for the embedding of the weighted harmonic mixed norm space into the corresponding mixed norm space.
LA - eng
KW - harmonic function; mixed norm space; Carleson measure
UR - http://eudml.org/doc/298920
ER -
References
top- Arsenović, M., Jovanović, T., 10.1515/math-2019-0108, Open Math. 17 (2019), 1260-1268. (2019) MR4029571DOI10.1515/math-2019-0108
- Arsenović, M., Shamoyan, R. F., On embeddings, traces and multipliers in harmonic function spaces, Kragujevac J. Math. 37 (2013), 45-64. (2013) Zbl1299.42022MR3073697
- Calzi, M., Peloso, M. M., Carleson and reverse Carleson measures on homogeneous Siegel domains, Available at https://arxiv.org/abs/2105.06342v2 (2021), 40 pages. (2021) MR4345338
- Choe, B. R., Lee, Y. J., Na, K., 10.1017/S0027763000008837, Nagoya Math. J. 174 (2004), 165-186. (2004) Zbl1067.47039MR2066107DOI10.1017/S0027763000008837
- Engliš, M., 10.1016/j.jmaa.2015.03.081, J. Math. Anal. Appl. 429 (2015), 233-272. (2015) Zbl1316.32003MR3339073DOI10.1016/j.jmaa.2015.03.081
- Fefferman, C. L., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) Zbl0257.46078MR0447953DOI10.1007/BF02392215
- Hu, Z., Estimate for the integral mean of harmonic functions on bounded domains in , Sci. China, Ser. A 38 (1995), 36-46. (1995) Zbl0824.31002MR1335197
- Hu, Z., Lv, X., 10.1007/s11401-013-0776-x, Chin. Ann. Math., Ser. B 34 (2013), 623-638. (2013) Zbl1294.47041MR3072252DOI10.1007/s11401-013-0776-x
- Jovanović, T., 10.1007/s10476-017-0602-x, Anal. Math. 44 (2018), 493-499. (2018) Zbl1424.31003MR3877590DOI10.1007/s10476-017-0602-x
- Kang, H., Koo, H., 10.1006/jfan.2001.3761, J. Funct. Anal. 185 (2001), 220-239. (2001) Zbl0983.31004MR1853757DOI10.1006/jfan.2001.3761
- Keshavarzi, H., Characterization of forward, vanishing and reverse Bergman Carleson measures using sparse domination, Available at https://arxiv.org/abs/2110.08926v1 (2021), 23 pages. (2021)
- Nam, K., Park, I., 10.4134/BKMS.2014.51.4.1195, Bull. Korean Math. Soc. 51 (2014), 1195-1204. (2014) Zbl1295.31015MR3248717DOI10.4134/BKMS.2014.51.4.1195
- Oleinik, V. L., 10.1007/BF01578546, J. Sov. Math. 9 (1978), 228-243. (1978) Zbl0396.31001DOI10.1007/BF01578546
- Tong, C., Li, J., 10.1007/s11401-021-0280-7, Chin. Ann. Math., Ser. B 42 (2021), 583-600. (2021) Zbl1471.32006MR4289194DOI10.1007/s11401-021-0280-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.