A Note on 3×3-valued Łukasiewicz Algebras with Negation

Carlos Gallardo; Alicia Ziliani

Bulletin of the Section of Logic (2021)

  • Volume: 50, Issue: 3, page 289-298
  • ISSN: 0138-0680

How to cite

top

Carlos Gallardo, and Alicia Ziliani. "A Note on 3×3-valued Łukasiewicz Algebras with Negation." Bulletin of the Section of Logic 50.3 (2021): 289-298. <http://eudml.org/doc/298955>.

@article{CarlosGallardo2021,
author = {Carlos Gallardo, Alicia Ziliani},
journal = {Bulletin of the Section of Logic},
keywords = {$n$-valued Łukasiewicz-Moisil algebras; $n \times m$-valued Łukasiewicz algebras with negation; free algebras; lattice of subvarieties},
number = {3},
pages = {289-298},
title = {A Note on 3×3-valued Łukasiewicz Algebras with Negation},
url = {http://eudml.org/doc/298955},
volume = {50},
year = {2021},
}

TY - JOUR
AU - Carlos Gallardo
AU - Alicia Ziliani
TI - A Note on 3×3-valued Łukasiewicz Algebras with Negation
JO - Bulletin of the Section of Logic
PY - 2021
VL - 50
IS - 3
SP - 289
EP - 298
KW - $n$-valued Łukasiewicz-Moisil algebras; $n \times m$-valued Łukasiewicz algebras with negation; free algebras; lattice of subvarieties
UR - http://eudml.org/doc/298955
ER -

References

top
  1. [1] N. Belnap, How a computer should think, Oriel Press, Boston (1977), pp. 30–56. 
  2. [2] V. Boicescu, A. Filipoiu, G. Georgescu, S.Rudeanu, Łukasiewicz-Moisil Algebras, vol. 49 of Annals of Discrete Mathematics, North-Holland, Amsterdam (1991). 
  3. [3] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin (1981). 
  4. [4] R. Cignoli, Moisil Algebras, vol. 27 of Notas de Lógica Matemática, Universidad Nacional del Sur, Argentina (1970). 
  5. [5] A. Day, Splitting algebras and a weak notion of projectivity, Algebra Universalis, vol. 5 (1975), pp. 153–162, DOI: https://doi.org/10.1007/BF02485249 
  6. [6] A. Day, On the lattice of subvarietes, Houston Journal of Mathematics, vol. 5 (1979), pp. 183–192. 
  7. [7] A. V. Figallo, C. Sanza, The NSn×m–propositional calculus, Bulletin of the Section of Logic, vol. 37 (2008), pp. 67–79. 
  8. [8] C. Gallardo, C. Sanza, A. Ziliani, F–multipliers and the localization of LMn×m–algebras, Analele Stiintifice ale Universitatii Ovidius Constanta, vol. 21 (2013), pp. 285–304, DOI: https://doi.org/10.2478/auom-2013-0019 
  9. [9] B. Jonnson, Algebras whose congruence lattices are distributive, Mathematica Scandinavica, vol. 21 (1967), pp. 110–121, DOI: https://doi.org/10.7146/math.scand.a-10850 
  10. [10] G. Moisil, Notes sur les logiques non-chrysippiennes, Annales Scientifiques de l’Université de Jassy, vol. 27 (1941), pp. 86–98. 
  11. [11] G. Moisil, Le algebre di Łukasiewicz, Analele Universitii Bucureti, seria Acta logica, vol. 6 (1963), pp. 97–135. 
  12. [12] C. Sanza, Algebras de Łukasiewicz n×m-valuadas con negación, Ph.D. thesis, Universidad Nacional del Sur, Argentina (2004). 
  13. [13] C. Sanza, Notes on n×m–valued Łukasiewicz algebras with negation, Logic Journal of the IGPL, vol. 12 (2004), pp. 499–507, DOI: https://doi.org/10.1093/jigpal/12.6.499 
  14. [14] C. Sanza, n×m–valued Łukasiewicz algebras with negation, Reports on Mathematical Logic, vol. 40 (2006), pp. 83–106. 
  15. [15] C. Sanza, On n×m–valued Łukasiewicz-Moisil algebras, Central European Journal of Mathematics, vol. 6 (2008), pp. 372–383, DOI: https://doi.org/10.2478/s11533-008-0035-7 
  16. [16] W. Suchoń, Matrix Łukasiewicz algebras, Reports on Mathematical Logic, vol. 4 (1975), pp. 91–104. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.