Proof Compression and NP Versus PSPACE II: Addendum

Lew Gordeev; Edward Hermann Haeusler

Bulletin of the Section of Logic (2022)

  • Volume: 51, Issue: 2, page 197-205
  • ISSN: 0138-0680

How to cite

top

Lew Gordeev, and Edward Hermann Haeusler. "Proof Compression and NP Versus PSPACE II: Addendum." Bulletin of the Section of Logic 51.2 (2022): 197-205. <http://eudml.org/doc/298956>.

@article{LewGordeev2022,
author = {Lew Gordeev, Edward Hermann Haeusler},
journal = {Bulletin of the Section of Logic},
keywords = {graph theory; natural deduction; computational complexity},
number = {2},
pages = {197-205},
title = {Proof Compression and NP Versus PSPACE II: Addendum},
url = {http://eudml.org/doc/298956},
volume = {51},
year = {2022},
}

TY - JOUR
AU - Lew Gordeev
AU - Edward Hermann Haeusler
TI - Proof Compression and NP Versus PSPACE II: Addendum
JO - Bulletin of the Section of Logic
PY - 2022
VL - 51
IS - 2
SP - 197
EP - 205
KW - graph theory; natural deduction; computational complexity
UR - http://eudml.org/doc/298956
ER -

References

top
  1. S. Arora, B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press (2009). 
  2. L. Gordeev, E. H. Haeusler, Proof Compression and NP Versus PSPACE, Studia Logica, vol. 107(1) (2019), pp. 55–83, DOI: https://doi.org/10.1007/s11225-017-9773-5 
  3. L. Gordeev, E. H. Haeusler, Proof Compression and NP Versus PSPACE II, Bulletin of the Section of Logic, vol. 49(3) (2020), pp. 213–230, DOI: https://doi.org/10.18778/0138-0680.2020.16 
  4. E. H. Haeusler, Propositional Logics Complexity and the Sub-Formula Property, [in:] Proceedings of the Tenth International Workshop on Developments in Computational Models DCM (2014), URL: https://arxiv.org/abs/1401.8209v3 
  5. J. Hudelmaier, An O(nlogn)-space decision procedure for intuitionistic propositional logic, Journal of Logic and Computation, vol. 3 (1993), pp. 1–13, DOI: https://doi.org/10.1093/logcom/3.1.63 
  6. D. Prawitz, Natural deduction: A proof-theoretical study, Almqvist & Wiksell (1965). 
  7. R. Statman, Intuitionistic propositional logic is polynomial-space complete, Theoretical Computer Science, vol. 9 (1979), pp. 67–72, DOI: https://doi.org/10.1016/0304-3975(79)90006-9 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.