An Arithmetically Complete Predicate Modal Logic

Yunge Hao; George Tourlakis

Bulletin of the Section of Logic (2021)

  • Volume: 50, Issue: 4, page 513-541
  • ISSN: 0138-0680

How to cite

top

Yunge Hao, and George Tourlakis. "An Arithmetically Complete Predicate Modal Logic." Bulletin of the Section of Logic 50.4 (2021): 513-541. <http://eudml.org/doc/298959>.

@article{YungeHao2021,
author = {Yunge Hao, George Tourlakis},
journal = {Bulletin of the Section of Logic},
keywords = {Predicate modal logic; arithmetic completeness; logic GL; Solovay's theorem; equational proofs},
number = {4},
pages = {513-541},
title = {An Arithmetically Complete Predicate Modal Logic},
url = {http://eudml.org/doc/298959},
volume = {50},
year = {2021},
}

TY - JOUR
AU - Yunge Hao
AU - George Tourlakis
TI - An Arithmetically Complete Predicate Modal Logic
JO - Bulletin of the Section of Logic
PY - 2021
VL - 50
IS - 4
SP - 513
EP - 541
KW - Predicate modal logic; arithmetic completeness; logic GL; Solovay's theorem; equational proofs
UR - http://eudml.org/doc/298959
ER -

References

top
  1. S. Artemov, G. Dzhaparidze, Finite Kripke Models and Predicate Logics of Provability, Journal of Symbolic Logic, vol. 55(3) (1990), pp. 1090–1098, DOI: https://doi.org/10.2307/2274475 
  2. A. Avron, On modal systems having arithmetical interpretations, Journal of Symbolic Logic, vol. 49(3) (1984), pp. 935–942, DOI: https://doi.org/10.2307/2274147 
  3. G. Boolos, The logic of provability, Cambridge University Press (2003), DOI: https://doi.org/10.1017/CBO9780511625183 
  4. E. W. Dijkstra, C. S. Scholten, Predicate Calculus and Program Semantics, Springer, New York (1990), DOI: https://doi.org/10.1007/978-1-4612-3228-5 
  5. K. Fine, Failures of the interpolation lemma in quantfied modal logic, Journal of Symbolic Logic, vol. 44(2) (1979), pp. 201–206, DOI: https://doi.org/10.2307/2273727 
  6. F. Gao, G. Tourlakis, A Short and Readable Proof of Cut Elimination for Two First-Order Modal Logics, Bulletin of the Section of Logic, vol. 44(3/4) (2015), DOI: https://doi.org/10.18778/0138-0680.44.3.4.03 
  7. K. Gödel, Eine Interpretation des intuitionistischen Aussagenkalkuls, Ergebnisse Math, vol. 4 (1933), pp. 39–40. 
  8. D. Gries, F. B. Schneider, A Logical Approach to Discrete Math, Springer, New York (1994), DOI: https://doi.org/10.1007/978-1-4757-3837-7 
  9. D. Gries, F. B. Schneider, Adding the Everywhere Operator to Propositional Logic, Journal of Logic and Computation, vol. 8(1) (1998), pp. 119–129, DOI: https://doi.org/10.1093/logcom/8.1.119 
  10. D. Hilbert, W. Ackermann, Principles of Mathematical Logic, Chelsea, New York (1950). 
  11. D. Hilbert, P. Bernays, Grundlagen der Mathematik I and II, Springer, New York (1968), DOI: https://doi.org/10.1007/978-3-642-86894-8 
  12. G. Japaridze, D. de Jongh, The Logic of Provability, [in:] Buss, S. R. (ed.), Handbook of Proof Theory, Elsevier Science B.V. (1998), pp. 475–550, DOI: https://doi.org/10.1016/S0049-237X(98)80022-0 
  13. F. Kibedi, G. Tourlakis, A Modal Extension of Weak Generalisation Predicate Logic, Logic Journal of IGPL, vol. 14(4) (2006), pp. 591–621, DOI: https://doi.org/10.1093/jigpal/jzl025 
  14. S. Kleene, Introduction to metamathematics, North-Holland, Amsterdam (1952). 
  15. S. A. Kripke, A completeness theorem in modal logic, Journal of Symbolic Logic, vol. 24(1) (1959), pp. 1–14, DOI: https://doi.org/10.2307/2964568 
  16. E. Mendelson, Introduction to Mathematical Logic, 3rd ed., Wadsworth & Brooks, Monterey, CA (1987), DOI: https://doi.org/10.1007/978-1-4615-7288-6 
  17. F. Montagna, The predicate modal logic of provability, Notre Dame Journal of Formal Logic, vol. 25(2) (1984), pp. 179–189, DOI: https://doi.org/10.1305/ndjfl/1093870577 
  18. Y. Schwartz, G. Tourlakis, On the Proof-Theory of two Formalisations of Modal First-Order Logic, Studia Logica, vol. 96(3) (2010), pp. 349–373, DOI: https://doi.org/10.1007/s11225-010-9294-y 
  19. Y. Schwartz, G. Tourlakis, On the proof-theory of a first-order extension of GL, Logic and Logical Philosophy, vol. 23(3) (2013), pp. 329–363, DOI: https://doi.org/10.12775/llp.2013.030 
  20. Y. Schwartz, G. Tourlakis, A proof theoretic tool for first-order modal logic, Bulletin of the Section of Logic, vol. 42(3/4) (2013), pp. 93–110. 
  21. J. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, MA (1967). 
  22. C. Smorynski, Self-Reference and Modal Logic, Springer, New York (1985), DOI: https://doi.org/10.1007/978-1-4613-8601-8 
  23. R. M. Solovay, Provability interpretations of modal logic, Israel Journal of Mathematics, vol. 25(3–4) (1976), pp. 287–304, DOI: https://doi.org/10.1007/bf02757006 
  24. G. Tourlakis, Lectures in Logic and Set Theory, Volume 1: Mathematical Logic, Cambridge University Press, Cambridge (2003), DOI: https://doi.org/10.1017/CBO9780511615559 
  25. G. Tourlakis, Mathematical Logic, John Wiley & Sons, Hoboken, NJ (2008), DOI: https://doi.org/10.1002/9781118032435 
  26. G. Tourlakis, A new arithmetically incomplete first-order extension of GL all theorems of which have cut free proofs, Bulletin of the Section of Logic, vol. 45(1) (2016), pp. 17–31, DOI: https://doi.org/10.18778/0138-0680.45.1.02 
  27. G. Tourlakis, F. Kibedi, A modal extension of first order classical logic. Part I, Bulletin of the Section of Logic, vol. 32(4) (2003), pp. 165–178. 
  28. G. Tourlakis, F. Kibedi, A modal extension of first order classical logic. Part II, Bulletin of the Section of Logic, vol. 33 (2004), pp. 1–10. 
  29. V. A. Vardanyan, Arithmetic complexity of predicate logics of provability and their fragments, Soviet Mathematics Doklady, vol. 34 (1986), pp. 384–387, URL: http://mi.mathnet.ru/eng/dan8607 
  30. R. E. Yavorsky, On Arithmetical Completeness of First-Order Logics of Provability, Advances in Modal Logic, (2002), pp. 1–16, DOI: https://doi.org/10.1142/9789812776471_0001 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.