An Arithmetically Complete Predicate Modal Logic
Bulletin of the Section of Logic (2021)
- Volume: 50, Issue: 4, page 513-541
- ISSN: 0138-0680
Access Full Article
topHow to cite
topYunge Hao, and George Tourlakis. "An Arithmetically Complete Predicate Modal Logic." Bulletin of the Section of Logic 50.4 (2021): 513-541. <http://eudml.org/doc/298959>.
@article{YungeHao2021,
author = {Yunge Hao, George Tourlakis},
journal = {Bulletin of the Section of Logic},
keywords = {Predicate modal logic; arithmetic completeness; logic GL; Solovay's theorem; equational proofs},
number = {4},
pages = {513-541},
title = {An Arithmetically Complete Predicate Modal Logic},
url = {http://eudml.org/doc/298959},
volume = {50},
year = {2021},
}
TY - JOUR
AU - Yunge Hao
AU - George Tourlakis
TI - An Arithmetically Complete Predicate Modal Logic
JO - Bulletin of the Section of Logic
PY - 2021
VL - 50
IS - 4
SP - 513
EP - 541
KW - Predicate modal logic; arithmetic completeness; logic GL; Solovay's theorem; equational proofs
UR - http://eudml.org/doc/298959
ER -
References
top- S. Artemov, G. Dzhaparidze, Finite Kripke Models and Predicate Logics of Provability, Journal of Symbolic Logic, vol. 55(3) (1990), pp. 1090–1098, DOI: https://doi.org/10.2307/2274475
- A. Avron, On modal systems having arithmetical interpretations, Journal of Symbolic Logic, vol. 49(3) (1984), pp. 935–942, DOI: https://doi.org/10.2307/2274147
- G. Boolos, The logic of provability, Cambridge University Press (2003), DOI: https://doi.org/10.1017/CBO9780511625183
- E. W. Dijkstra, C. S. Scholten, Predicate Calculus and Program Semantics, Springer, New York (1990), DOI: https://doi.org/10.1007/978-1-4612-3228-5
- K. Fine, Failures of the interpolation lemma in quantfied modal logic, Journal of Symbolic Logic, vol. 44(2) (1979), pp. 201–206, DOI: https://doi.org/10.2307/2273727
- F. Gao, G. Tourlakis, A Short and Readable Proof of Cut Elimination for Two First-Order Modal Logics, Bulletin of the Section of Logic, vol. 44(3/4) (2015), DOI: https://doi.org/10.18778/0138-0680.44.3.4.03
- K. Gödel, Eine Interpretation des intuitionistischen Aussagenkalkuls, Ergebnisse Math, vol. 4 (1933), pp. 39–40.
- D. Gries, F. B. Schneider, A Logical Approach to Discrete Math, Springer, New York (1994), DOI: https://doi.org/10.1007/978-1-4757-3837-7
- D. Gries, F. B. Schneider, Adding the Everywhere Operator to Propositional Logic, Journal of Logic and Computation, vol. 8(1) (1998), pp. 119–129, DOI: https://doi.org/10.1093/logcom/8.1.119
- D. Hilbert, W. Ackermann, Principles of Mathematical Logic, Chelsea, New York (1950).
- D. Hilbert, P. Bernays, Grundlagen der Mathematik I and II, Springer, New York (1968), DOI: https://doi.org/10.1007/978-3-642-86894-8
- G. Japaridze, D. de Jongh, The Logic of Provability, [in:] Buss, S. R. (ed.), Handbook of Proof Theory, Elsevier Science B.V. (1998), pp. 475–550, DOI: https://doi.org/10.1016/S0049-237X(98)80022-0
- F. Kibedi, G. Tourlakis, A Modal Extension of Weak Generalisation Predicate Logic, Logic Journal of IGPL, vol. 14(4) (2006), pp. 591–621, DOI: https://doi.org/10.1093/jigpal/jzl025
- S. Kleene, Introduction to metamathematics, North-Holland, Amsterdam (1952).
- S. A. Kripke, A completeness theorem in modal logic, Journal of Symbolic Logic, vol. 24(1) (1959), pp. 1–14, DOI: https://doi.org/10.2307/2964568
- E. Mendelson, Introduction to Mathematical Logic, 3rd ed., Wadsworth & Brooks, Monterey, CA (1987), DOI: https://doi.org/10.1007/978-1-4615-7288-6
- F. Montagna, The predicate modal logic of provability, Notre Dame Journal of Formal Logic, vol. 25(2) (1984), pp. 179–189, DOI: https://doi.org/10.1305/ndjfl/1093870577
- Y. Schwartz, G. Tourlakis, On the Proof-Theory of two Formalisations of Modal First-Order Logic, Studia Logica, vol. 96(3) (2010), pp. 349–373, DOI: https://doi.org/10.1007/s11225-010-9294-y
- Y. Schwartz, G. Tourlakis, On the proof-theory of a first-order extension of GL, Logic and Logical Philosophy, vol. 23(3) (2013), pp. 329–363, DOI: https://doi.org/10.12775/llp.2013.030
- Y. Schwartz, G. Tourlakis, A proof theoretic tool for first-order modal logic, Bulletin of the Section of Logic, vol. 42(3/4) (2013), pp. 93–110.
- J. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, MA (1967).
- C. Smorynski, Self-Reference and Modal Logic, Springer, New York (1985), DOI: https://doi.org/10.1007/978-1-4613-8601-8
- R. M. Solovay, Provability interpretations of modal logic, Israel Journal of Mathematics, vol. 25(3–4) (1976), pp. 287–304, DOI: https://doi.org/10.1007/bf02757006
- G. Tourlakis, Lectures in Logic and Set Theory, Volume 1: Mathematical Logic, Cambridge University Press, Cambridge (2003), DOI: https://doi.org/10.1017/CBO9780511615559
- G. Tourlakis, Mathematical Logic, John Wiley & Sons, Hoboken, NJ (2008), DOI: https://doi.org/10.1002/9781118032435
- G. Tourlakis, A new arithmetically incomplete first-order extension of GL all theorems of which have cut free proofs, Bulletin of the Section of Logic, vol. 45(1) (2016), pp. 17–31, DOI: https://doi.org/10.18778/0138-0680.45.1.02
- G. Tourlakis, F. Kibedi, A modal extension of first order classical logic. Part I, Bulletin of the Section of Logic, vol. 32(4) (2003), pp. 165–178.
- G. Tourlakis, F. Kibedi, A modal extension of first order classical logic. Part II, Bulletin of the Section of Logic, vol. 33 (2004), pp. 1–10.
- V. A. Vardanyan, Arithmetic complexity of predicate logics of provability and their fragments, Soviet Mathematics Doklady, vol. 34 (1986), pp. 384–387, URL: http://mi.mathnet.ru/eng/dan8607
- R. E. Yavorsky, On Arithmetical Completeness of First-Order Logics of Provability, Advances in Modal Logic, (2002), pp. 1–16, DOI: https://doi.org/10.1142/9789812776471_0001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.