The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework)
Bulletin of the Section of Logic (2021)
- Volume: 50, Issue: 4, page 421-453
- ISSN: 0138-0680
Access Full Article
topHow to cite
topDamian E. Szmuc. "The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework)." Bulletin of the Section of Logic 50.4 (2021): 421-453. <http://eudml.org/doc/298962>.
@article{DamianE2021,
author = {Damian E. Szmuc},
journal = {Bulletin of the Section of Logic},
keywords = {Relevant logics; non-transitive logics; p-matrix; weak Kleene algebra; infectious logics},
number = {4},
pages = {421-453},
title = {The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework)},
url = {http://eudml.org/doc/298962},
volume = {50},
year = {2021},
}
TY - JOUR
AU - Damian E. Szmuc
TI - The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework)
JO - Bulletin of the Section of Logic
PY - 2021
VL - 50
IS - 4
SP - 421
EP - 453
KW - Relevant logics; non-transitive logics; p-matrix; weak Kleene algebra; infectious logics
UR - http://eudml.org/doc/298962
ER -
References
top- A. Anderson, N. Belnap, Entailment: The Logic of Relevance and Neccessity, vol. 1, Princeton University Press, Princeton (1975).
- G. Badia, Variable sharing in substructural logics: an algebraic characterization, Bulletin of the Section of Logic, vol. 47(2) (2018), pp. 107–115, DOI: https://doi.org/10.18778/0138-0680.47.2.03
- E. Barrio, F. Pailos, D. Szmuc, A Hierarchy of Classical and Paraconsistent Logics, Journal of Philosophical Logic, vol. 1(49) (2020), pp. 93–120, DOI: https://doi.org/10.1007/s10992-019-09513-z
- N. Belnap, How a Computer Should Think, [in:] G. Ryle (ed.), Contemporary Aspects of Philosophy, Oriel Press, Stocksfield (1977), pp. 30–55.
- F. Berto, Simple hyperintensional belief revision, Erkenntnis, vol. 84(3) (2019), pp. 559–575, DOI: https://doi.org/10.1007/s10670-018-9971-1
- D. Bochvar, On a Three-Valued Calculus and its Application in the Analysis of the Paradoxes of the Extended Functional Calculus, Matematicheskii Sbornik, vol. 4 (1938), pp. 287–308.
- W. Carnielli, Methods of proof for relatedness logic and dependence logics, Reports on Mathematical Logic, vol. 21 (1987), pp. 35–46.
- P. Cobreros, P. Égré, D. Ripley, R. van Rooij, Tolerance and mixed consequence in the s’valuationist setting, Studia Logica, vol. 100(4) (2012), pp. 855–877, DOI: https://doi.org/10.1007/s11225-012-9422-y
- P. Cobreros, P. Égré, D. Ripley, R. van Rooij, Tolerant, classical, strict, Journal of Philosophical Logic, vol. 41(2) (2012), pp. 347–385.
- P. Cobreros, P. Égré, D. Ripley, R. van Rooij, Priest’s motorbike and tolerant identity, [in:] R. Ciuni, H. Wansing, C. Wilkommen (eds.), Recent Trends in Philosophical Logic, Springer, Cham (2014), pp. 75–85, DOI: https://doi.org/10.1007/978-3-319-06080-4_6
- P. Cobreros, P. Égré, D. Ripley, R. van Rooij, Reaching transparent truth, Mind, vol. 122(488) (2014), p. 841–866.
- M. Coniglio, M. I. Corbalán, Sequent Calculi for the classical fragment of Bochvar and Halldén’s Nonsense Logics, [in:] Proceedings of the 7th Workshop on Logical and Semantic Frameworks with Applications (LSFA) (2012), pp. 125–136, DOI: https://doi.org/10.4204/EPTCS.113.12
- F. Correia, Weak necessity on weak Kleene matrices, [in:] F. Wolter, H. Wansing, M. de Rijke, M. Zakharyashev (eds.), Advances in Modal Logic, World Scientific, River Edge, NJ (2002), pp. 73–90, DOI: https://doi.org/10.1142/9789812776471_0005
- B. Dicher, F. Paoli, ST, LP, and tolerant metainferences, [in:] C. Başkent, T. M. Ferguson (eds.), Graham Priest on Dialetheism and Paraconsistency, Springer, Dordrecht (2020), pp. 383–407, DOI: https://doi.org/10.1007/978-3-030-25365-3_18
- M. Dunn, Intuitive semantics for first-degree entailments and ‘coupled trees’, Philosophical Studies, vol. 29(3) (1976), pp. 149–168, DOI: https://doi.org/10.1007/BF00373152
- R. Epstein, The Semantic Foundations of Logic, vol. I: Propositional Logics, Springer (1990), DOI: https://doi.org/10.1007/978-94-009-0525-2
- L. Fariñas del Cerro, V. Lugardon, Sequents for dependence logics, Logique et Analyse, vol. 133–134 (1991), pp. 57–71.
- M. Fitting, The Strict/Tolerant Idea and Bilattices, [in:] O. Arieli, A. Zamansky (eds.), Arnon Avron on Semantics and Proof Theory of Non-Classical Logics, Springer (2021).
- J. M. Font, Abstract Algebraic Logic, College Publications, London (2016).
- S. Frankowski, Formalization of a Plausible Inference, Bulletin of the Section of Logic, vol. 33(1) (2004), pp. 41–52.
- R. French, A Simple Sequent Calculus for Angell’s Logic of Analytic Containment, Studia Logica, vol. 105(5) (2017), pp. 971–994, DOI: https://doi.org/10.1007/s11225-017-9719-y
- N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, San Diego, CA, USA (2007).
- J.-Y. Girard, Proof theory and logical complexity, Bibliopolis, Napoli (1987).
- S. Halldén, The Logic of Nonsense, Uppsala Universitets Arsskrift, Uppsala (1949).
- L. Humberstone, The Connectives, MIT Press, Cambridge, MA (2011).
- S. C. Kleene, Introduction to metamathematics, North-Holland, Amsterdam (1952).
- S. Kripke, Outline of a theory of truth, Journal of Philosophy, vol. 72(19) (1975), pp. 690–716, DOI: https://doi.org/10.2307/2024634
- E. Mares, Relevance Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, spring 2014 ed., Metaphysics Research Lab, Stanford University (2014), URL: https://plato.stanford.edu/archives/spr2014/entries/logic-relevance/
- E. J. Nelson, Intensional relations, Mind, vol. 39(156) (1930), pp. 440–453.
- F. Paoli, Semantics for first-degree relatedness logic, Reports on Mathematical Logic, vol. 27 (1993), pp. 81–94.
- F. Paoli, Tautological entailments and their rivals, [in:] J. Béziau, W. Carnielli, D. Gabbay (eds.), Handbook of Paraconsistency, College Publications, London (2007), pp. 153–175.
- F. Paoli, M. P. Baldi, Proof Theory of Paraconsistent Weak Kleene Logic, Studia Logica, vol. 108(4) (2020), pp. 779–802, DOI: https://doi.org/10.1007/s11225-019-09876-z
- W. T. Parry, Ein Axiomensystem für eine neue Art von Implikation (analytische Implikation), Ergebnisse eines mathematischen Kolloquiums, vol. 4 (1933), pp. 5–6.
- D. Ripley, Conservatively extending classical logic with transparent truth, Review of Symbolic Logic, vol. 5(2) (2012), pp. 354–378, DOI: https://doi.org/10.1017/S1755020312000056
- D. Ripley, Paradoxes and failures of cut, Australasian Journal of Philosophy, vol. 91(1) (2013), pp. 139–164, DOI: https://doi.org/10.1080/00048402.2011.630010
- G. Robles, J. M. Méndez, A Class of Simpler Logical Matrices for the Variable-Sharing Property, Logic and Logical Philosophy, vol. 20(3) (2011), pp. 241–249, DOI: https://doi.org/10.12775/LLP.2011.014
- G. Robles, J. M. Méndez, A general characterization of the variable-sharing property by means of logical matrices, Notre Dame Journal of Formal Logic, vol. 53(2) (2012), pp. 223–244, DOI: https://doi.org/10.1215/00294527-1715707
- G. Robles, J. M. Méndez, F. Salto, A Modal Restriction of R-Mingle with the Variable-Sharing Property, Logic and Logical Philosophy, vol. 19(4) (2010), pp. 341–351, DOI: https://doi.org/10.12775/LLP.2010.013
- C. Scambler, Classical logic and the strict tolerant hierarchy, Journal of Philosophical Logic, vol. 2(49) (2020), p. 351–370, DOI: https://doi.org/10.1007/s10992-019-09520-0
- K. Schütte, Proof Theory, Springer, Berlin (1977).
- D. Szmuc, A simple matrix semantics and sequent calculus for Parry’s logic of Analytic Implication, Studia Logica, (2021), DOI: https://doi.org/10.1007/s11225-020-09926-x
- D. Szmuc, T. M. Ferguson, Meaningless Divisions, forthcoming in Notre Dame Journal of Formal Logic.
- G. Takeuti, Proof Theory, 2nd ed., Elsevier, Amsterdam (1987).
- R. Wójcicki, Some Remarks on the Consequence Operation in Sentential Logics, Fundamenta Mathematicae, vol. 68(1) (1970), pp. 269–279.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.