The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework)

Damian E. Szmuc

Bulletin of the Section of Logic (2021)

  • Volume: 50, Issue: 4, page 421-453
  • ISSN: 0138-0680

How to cite

top

Damian E. Szmuc. "The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework)." Bulletin of the Section of Logic 50.4 (2021): 421-453. <http://eudml.org/doc/298962>.

@article{DamianE2021,
author = {Damian E. Szmuc},
journal = {Bulletin of the Section of Logic},
keywords = {Relevant logics; non-transitive logics; p-matrix; weak Kleene algebra; infectious logics},
number = {4},
pages = {421-453},
title = {The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework)},
url = {http://eudml.org/doc/298962},
volume = {50},
year = {2021},
}

TY - JOUR
AU - Damian E. Szmuc
TI - The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework)
JO - Bulletin of the Section of Logic
PY - 2021
VL - 50
IS - 4
SP - 421
EP - 453
KW - Relevant logics; non-transitive logics; p-matrix; weak Kleene algebra; infectious logics
UR - http://eudml.org/doc/298962
ER -

References

top
  1. A. Anderson, N. Belnap, Entailment: The Logic of Relevance and Neccessity, vol. 1, Princeton University Press, Princeton (1975). 
  2. G. Badia, Variable sharing in substructural logics: an algebraic characterization, Bulletin of the Section of Logic, vol. 47(2) (2018), pp. 107–115, DOI: https://doi.org/10.18778/0138-0680.47.2.03 
  3. E. Barrio, F. Pailos, D. Szmuc, A Hierarchy of Classical and Paraconsistent Logics, Journal of Philosophical Logic, vol. 1(49) (2020), pp. 93–120, DOI: https://doi.org/10.1007/s10992-019-09513-z 
  4. N. Belnap, How a Computer Should Think, [in:] G. Ryle (ed.), Contemporary Aspects of Philosophy, Oriel Press, Stocksfield (1977), pp. 30–55. 
  5. F. Berto, Simple hyperintensional belief revision, Erkenntnis, vol. 84(3) (2019), pp. 559–575, DOI: https://doi.org/10.1007/s10670-018-9971-1 
  6. D. Bochvar, On a Three-Valued Calculus and its Application in the Analysis of the Paradoxes of the Extended Functional Calculus, Matematicheskii Sbornik, vol. 4 (1938), pp. 287–308. 
  7. W. Carnielli, Methods of proof for relatedness logic and dependence logics, Reports on Mathematical Logic, vol. 21 (1987), pp. 35–46. 
  8. P. Cobreros, P. Égré, D. Ripley, R. van Rooij, Tolerance and mixed consequence in the s’valuationist setting, Studia Logica, vol. 100(4) (2012), pp. 855–877, DOI: https://doi.org/10.1007/s11225-012-9422-y 
  9. P. Cobreros, P. Égré, D. Ripley, R. van Rooij, Tolerant, classical, strict, Journal of Philosophical Logic, vol. 41(2) (2012), pp. 347–385. 
  10. P. Cobreros, P. Égré, D. Ripley, R. van Rooij, Priest’s motorbike and tolerant identity, [in:] R. Ciuni, H. Wansing, C. Wilkommen (eds.), Recent Trends in Philosophical Logic, Springer, Cham (2014), pp. 75–85, DOI: https://doi.org/10.1007/978-3-319-06080-4_6 
  11. P. Cobreros, P. Égré, D. Ripley, R. van Rooij, Reaching transparent truth, Mind, vol. 122(488) (2014), p. 841–866. 
  12. M. Coniglio, M. I. Corbalán, Sequent Calculi for the classical fragment of Bochvar and Halldén’s Nonsense Logics, [in:] Proceedings of the 7th Workshop on Logical and Semantic Frameworks with Applications (LSFA) (2012), pp. 125–136, DOI: https://doi.org/10.4204/EPTCS.113.12 
  13. F. Correia, Weak necessity on weak Kleene matrices, [in:] F. Wolter, H. Wansing, M. de Rijke, M. Zakharyashev (eds.), Advances in Modal Logic, World Scientific, River Edge, NJ (2002), pp. 73–90, DOI: https://doi.org/10.1142/9789812776471_0005 
  14. B. Dicher, F. Paoli, ST, LP, and tolerant metainferences, [in:] C. Başkent, T. M. Ferguson (eds.), Graham Priest on Dialetheism and Paraconsistency, Springer, Dordrecht (2020), pp. 383–407, DOI: https://doi.org/10.1007/978-3-030-25365-3_18 
  15. M. Dunn, Intuitive semantics for first-degree entailments and ‘coupled trees’, Philosophical Studies, vol. 29(3) (1976), pp. 149–168, DOI: https://doi.org/10.1007/BF00373152 
  16. R. Epstein, The Semantic Foundations of Logic, vol. I: Propositional Logics, Springer (1990), DOI: https://doi.org/10.1007/978-94-009-0525-2 
  17. L. Fariñas del Cerro, V. Lugardon, Sequents for dependence logics, Logique et Analyse, vol. 133–134 (1991), pp. 57–71. 
  18. M. Fitting, The Strict/Tolerant Idea and Bilattices, [in:] O. Arieli, A. Zamansky (eds.), Arnon Avron on Semantics and Proof Theory of Non-Classical Logics, Springer (2021). 
  19. J. M. Font, Abstract Algebraic Logic, College Publications, London (2016). 
  20. S. Frankowski, Formalization of a Plausible Inference, Bulletin of the Section of Logic, vol. 33(1) (2004), pp. 41–52. 
  21. R. French, A Simple Sequent Calculus for Angell’s Logic of Analytic Containment, Studia Logica, vol. 105(5) (2017), pp. 971–994, DOI: https://doi.org/10.1007/s11225-017-9719-y 
  22. N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, San Diego, CA, USA (2007). 
  23. J.-Y. Girard, Proof theory and logical complexity, Bibliopolis, Napoli (1987). 
  24. S. Halldén, The Logic of Nonsense, Uppsala Universitets Arsskrift, Uppsala (1949). 
  25. L. Humberstone, The Connectives, MIT Press, Cambridge, MA (2011). 
  26. S. C. Kleene, Introduction to metamathematics, North-Holland, Amsterdam (1952). 
  27. S. Kripke, Outline of a theory of truth, Journal of Philosophy, vol. 72(19) (1975), pp. 690–716, DOI: https://doi.org/10.2307/2024634 
  28. E. Mares, Relevance Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, spring 2014 ed., Metaphysics Research Lab, Stanford University (2014), URL: https://plato.stanford.edu/archives/spr2014/entries/logic-relevance/ 
  29. E. J. Nelson, Intensional relations, Mind, vol. 39(156) (1930), pp. 440–453. 
  30. F. Paoli, Semantics for first-degree relatedness logic, Reports on Mathematical Logic, vol. 27 (1993), pp. 81–94. 
  31. F. Paoli, Tautological entailments and their rivals, [in:] J. Béziau, W. Carnielli, D. Gabbay (eds.), Handbook of Paraconsistency, College Publications, London (2007), pp. 153–175. 
  32. F. Paoli, M. P. Baldi, Proof Theory of Paraconsistent Weak Kleene Logic, Studia Logica, vol. 108(4) (2020), pp. 779–802, DOI: https://doi.org/10.1007/s11225-019-09876-z 
  33. W. T. Parry, Ein Axiomensystem für eine neue Art von Implikation (analytische Implikation), Ergebnisse eines mathematischen Kolloquiums, vol. 4 (1933), pp. 5–6. 
  34. D. Ripley, Conservatively extending classical logic with transparent truth, Review of Symbolic Logic, vol. 5(2) (2012), pp. 354–378, DOI: https://doi.org/10.1017/S1755020312000056 
  35. D. Ripley, Paradoxes and failures of cut, Australasian Journal of Philosophy, vol. 91(1) (2013), pp. 139–164, DOI: https://doi.org/10.1080/00048402.2011.630010 
  36. G. Robles, J. M. Méndez, A Class of Simpler Logical Matrices for the Variable-Sharing Property, Logic and Logical Philosophy, vol. 20(3) (2011), pp. 241–249, DOI: https://doi.org/10.12775/LLP.2011.014 
  37. G. Robles, J. M. Méndez, A general characterization of the variable-sharing property by means of logical matrices, Notre Dame Journal of Formal Logic, vol. 53(2) (2012), pp. 223–244, DOI: https://doi.org/10.1215/00294527-1715707 
  38. G. Robles, J. M. Méndez, F. Salto, A Modal Restriction of R-Mingle with the Variable-Sharing Property, Logic and Logical Philosophy, vol. 19(4) (2010), pp. 341–351, DOI: https://doi.org/10.12775/LLP.2010.013 
  39. C. Scambler, Classical logic and the strict tolerant hierarchy, Journal of Philosophical Logic, vol. 2(49) (2020), p. 351–370, DOI: https://doi.org/10.1007/s10992-019-09520-0 
  40. K. Schütte, Proof Theory, Springer, Berlin (1977). 
  41. D. Szmuc, A simple matrix semantics and sequent calculus for Parry’s logic of Analytic Implication, Studia Logica, (2021), DOI: https://doi.org/10.1007/s11225-020-09926-x 
  42. D. Szmuc, T. M. Ferguson, Meaningless Divisions, forthcoming in Notre Dame Journal of Formal Logic. 
  43. G. Takeuti, Proof Theory, 2nd ed., Elsevier, Amsterdam (1987). 
  44. R. Wójcicki, Some Remarks on the Consequence Operation in Sentential Logics, Fundamenta Mathematicae, vol. 68(1) (1970), pp. 269–279. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.