A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB
Bulletin of the Section of Logic (2021)
- Volume: 50, Issue: 4, page 455-463
- ISSN: 0138-0680
Access Full Article
topHow to cite
topTakao Inoue. "A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB." Bulletin of the Section of Logic 50.4 (2021): 455-463. <http://eudml.org/doc/298965>.
@article{TakaoInoue2021,
author = {Takao Inoue},
journal = {Bulletin of the Section of Logic},
keywords = {Le´sniewski’s ontology; propositional ontology; translation; interpretation; modal logic; KTB; soundness; Grzegorczyk’s modal logic},
number = {4},
pages = {455-463},
title = {A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB},
url = {http://eudml.org/doc/298965},
volume = {50},
year = {2021},
}
TY - JOUR
AU - Takao Inoue
TI - A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB
JO - Bulletin of the Section of Logic
PY - 2021
VL - 50
IS - 4
SP - 455
EP - 463
KW - Le´sniewski’s ontology; propositional ontology; translation; interpretation; modal logic; KTB; soundness; Grzegorczyk’s modal logic
UR - http://eudml.org/doc/298965
ER -
References
top- [1] L. Aqvist, Deontic logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 605–714, DOI: https://doi.org/10.1007/978-94-009-6259-0
- [2] A. Blass, A faithful modal interpretation of propositional ontology, Mathematica Japonica, vol. 40 (1994), pp. 217–223.
- [3] G. Boolos, The Logic of Provability, Cambridge University Press, Cambridge (1993), DOI: https://doi.org/10.1017/CBO9780511625183
- [4] R. A. Bull, K. Segerberg, Basic modal logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 1–82, DOI: https://doi.org/10.1007/978-94-009-6259-0
- [5] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford (1997).
- [6] M. Fitting, Proof Methods for Modal and Intuitionistic Logics, vol. 168 of Synthese Library, D. Reidel, Dordrecht (1983), DOI: https://doi.org/10.1007/978-94-017-2794-5
- [7] J. D. Hamkins, B. Löwe, The modal logic of forcing, Transactions of the American Mathematical Society, vol. 360 (2007), pp. 1793–1817, DOI: https://doi.org/10.1090/S0002-9947-07-04297-3
- [8]G. E. Hughes, M. J. Cresswell, A Companion to Modal Logic, Methuen, London (1984).
- [9] T. Inoué, Partial interpretation of Leśniewski’s epsilon in modal and intensional logics (abstract), The Bulletin of Symbolic Logic, vol. 1 (1995), pp. 95–96.
- [10] T. Inoué, Partial interpretations of Leśniewski’s epsilon in von Wright-type deontic logics and provability logics, Bulletin of the Section of Logic, vol. 24(4) (1995), pp. 223–233.
- [11] T. Inoué, On Blass translation for Leśniewski’s propositional ontology and modal logics, Studia Logica, (2021), DOI: https://doi.org/10.1007/s11225-021-09962-1
- [12] A. Ishimoto, A propositional fragment of Leśniewski’s ontology, Studia Logica, vol. 36 (1977), pp. 285–299, DOI: https://doi.org/10.1007/BF02120666
- [13] M. Kobayashi, A. Ishimoto, A propositional fragment of Leśniewski’s ontology and its formulation by the tableau method, Studia Logica, vol. 41 (1982), pp. 181–195, DOI: https://doi.org/10.1007/BF00370344
- [14] H. Ono, Proof Theory and Algebra in Logic, vol. 2 of Short Textbooks in Logic, Springer, Singapore (2019), DOI: https://doi.org/10.1007/978-981-13-7997-0
- [15] F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, vol. 32 of Trends in Logic Series, Springer, Dordrecht (2011), DOI: https://doi.org/10.1007/978-90-481-9670-8
- [16] Y. Savateev, D. Shamkanov, Non-well-founded proofs for the Grzegorczyk modal logic, The Review of Symbolic Logic, vol. 14 (2021), pp. 22–50, DOI: https://doi.org/10.1017/S1755020319000510
- [17] J. Słupecki, S. Leśniewski’s calculus of names, Studia Logica, vol. 3 (1955), pp. 7–71, DOI: https://doi.org/10.1007/BF02067245
- [18] M. Takano, A semantical investigation into Leśniewski’s axiom of his ontology, Studia Logica, vol. 44 (1985), pp. 71–77, DOI: https://doi.org/10.1007/BF00370810
- [19] R. Urbaniak, Leśniewski’s Systems of Logic and Foundations of Mathematics, vol. 37 of Trends in Logic Series, Springer, Cham (2014), DOI: https://doi.org/10.1007/978-3-319-00482-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.