A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB

Takao Inoue

Bulletin of the Section of Logic (2021)

  • Volume: 50, Issue: 4, page 455-463
  • ISSN: 0138-0680

How to cite

top

Takao Inoue. "A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB." Bulletin of the Section of Logic 50.4 (2021): 455-463. <http://eudml.org/doc/298965>.

@article{TakaoInoue2021,
author = {Takao Inoue},
journal = {Bulletin of the Section of Logic},
keywords = {Le´sniewski’s ontology; propositional ontology; translation; interpretation; modal logic; KTB; soundness; Grzegorczyk’s modal logic},
number = {4},
pages = {455-463},
title = {A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB},
url = {http://eudml.org/doc/298965},
volume = {50},
year = {2021},
}

TY - JOUR
AU - Takao Inoue
TI - A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB
JO - Bulletin of the Section of Logic
PY - 2021
VL - 50
IS - 4
SP - 455
EP - 463
KW - Le´sniewski’s ontology; propositional ontology; translation; interpretation; modal logic; KTB; soundness; Grzegorczyk’s modal logic
UR - http://eudml.org/doc/298965
ER -

References

top
  1. [1] L. Aqvist, Deontic logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 605–714, DOI: https://doi.org/10.1007/978-94-009-6259-0 
  2. [2] A. Blass, A faithful modal interpretation of propositional ontology, Mathematica Japonica, vol. 40 (1994), pp. 217–223. 
  3. [3] G. Boolos, The Logic of Provability, Cambridge University Press, Cambridge (1993), DOI: https://doi.org/10.1017/CBO9780511625183 
  4. [4] R. A. Bull, K. Segerberg, Basic modal logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 1–82, DOI: https://doi.org/10.1007/978-94-009-6259-0 
  5. [5] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford (1997). 
  6. [6] M. Fitting, Proof Methods for Modal and Intuitionistic Logics, vol. 168 of Synthese Library, D. Reidel, Dordrecht (1983), DOI: https://doi.org/10.1007/978-94-017-2794-5 
  7. [7] J. D. Hamkins, B. Löwe, The modal logic of forcing, Transactions of the American Mathematical Society, vol. 360 (2007), pp. 1793–1817, DOI: https://doi.org/10.1090/S0002-9947-07-04297-3 
  8. [8]G. E. Hughes, M. J. Cresswell, A Companion to Modal Logic, Methuen, London (1984). 
  9. [9] T. Inoué, Partial interpretation of Leśniewski’s epsilon in modal and intensional logics (abstract), The Bulletin of Symbolic Logic, vol. 1 (1995), pp. 95–96. 
  10. [10] T. Inoué, Partial interpretations of Leśniewski’s epsilon in von Wright-type deontic logics and provability logics, Bulletin of the Section of Logic, vol. 24(4) (1995), pp. 223–233. 
  11. [11] T. Inoué, On Blass translation for Leśniewski’s propositional ontology and modal logics, Studia Logica, (2021), DOI: https://doi.org/10.1007/s11225-021-09962-1 
  12. [12] A. Ishimoto, A propositional fragment of Leśniewski’s ontology, Studia Logica, vol. 36 (1977), pp. 285–299, DOI: https://doi.org/10.1007/BF02120666 
  13. [13] M. Kobayashi, A. Ishimoto, A propositional fragment of Leśniewski’s ontology and its formulation by the tableau method, Studia Logica, vol. 41 (1982), pp. 181–195, DOI: https://doi.org/10.1007/BF00370344 
  14. [14] H. Ono, Proof Theory and Algebra in Logic, vol. 2 of Short Textbooks in Logic, Springer, Singapore (2019), DOI: https://doi.org/10.1007/978-981-13-7997-0 
  15. [15] F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, vol. 32 of Trends in Logic Series, Springer, Dordrecht (2011), DOI: https://doi.org/10.1007/978-90-481-9670-8 
  16. [16] Y. Savateev, D. Shamkanov, Non-well-founded proofs for the Grzegorczyk modal logic, The Review of Symbolic Logic, vol. 14 (2021), pp. 22–50, DOI: https://doi.org/10.1017/S1755020319000510 
  17. [17] J. Słupecki, S. Leśniewski’s calculus of names, Studia Logica, vol. 3 (1955), pp. 7–71, DOI: https://doi.org/10.1007/BF02067245 
  18. [18] M. Takano, A semantical investigation into Leśniewski’s axiom of his ontology, Studia Logica, vol. 44 (1985), pp. 71–77, DOI: https://doi.org/10.1007/BF00370810 
  19. [19] R. Urbaniak, Leśniewski’s Systems of Logic and Foundations of Mathematics, vol. 37 of Trends in Logic Series, Springer, Cham (2014), DOI: https://doi.org/10.1007/978-3-319-00482-2 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.