Maxwell’s equations revisited – mental imagery and mathematical symbols

Matthias Geyer; Jan Hausmann; Konrad Kitzing; Madlyn Senkyr; Stefan Siegmund

Archivum Mathematicum (2023)

  • Issue: 1, page 47-68
  • ISSN: 0044-8753

Abstract

top
Using Maxwell’s mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations curl 𝐄 = - 𝐁 t , curl 𝐇 = 𝐃 t + 𝐣 , div 𝐃 = ϱ , div 𝐁 = 0 , which together with the constituting relations 𝐃 = ε 0 𝐄 , 𝐁 = μ 0 𝐇 , form what we call today Maxwell’s equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare’s lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement the paper.

How to cite

top

Geyer, Matthias, et al. "Maxwell’s equations revisited – mental imagery and mathematical symbols." Archivum Mathematicum (2023): 47-68. <http://eudml.org/doc/298979>.

@article{Geyer2023,
abstract = {Using Maxwell’s mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations $\operatorname\{curl\} \mathbf \{E\} = -\frac\{\partial \mathbf \{B\}\}\{\partial t\}$, $\operatorname\{curl\} \mathbf \{H\} = \frac\{\partial \mathbf \{D\}\}\{\partial t\} + \mathbf \{j\}$, $\operatorname\{div\} \mathbf \{D\} = \varrho $, $\operatorname\{div\} \mathbf \{B\} = 0$, which together with the constituting relations $\mathbf \{D\} = \varepsilon _0 \mathbf \{E\}$, $\mathbf \{B\} = \mu _0 \mathbf \{H\}$, form what we call today Maxwell’s equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare’s lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement the paper.},
author = {Geyer, Matthias, Hausmann, Jan, Kitzing, Konrad, Senkyr, Madlyn, Siegmund, Stefan},
journal = {Archivum Mathematicum},
keywords = {Maxwell’s equations},
language = {eng},
number = {1},
pages = {47-68},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Maxwell’s equations revisited – mental imagery and mathematical symbols},
url = {http://eudml.org/doc/298979},
year = {2023},
}

TY - JOUR
AU - Geyer, Matthias
AU - Hausmann, Jan
AU - Kitzing, Konrad
AU - Senkyr, Madlyn
AU - Siegmund, Stefan
TI - Maxwell’s equations revisited – mental imagery and mathematical symbols
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 1
SP - 47
EP - 68
AB - Using Maxwell’s mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations $\operatorname{curl} \mathbf {E} = -\frac{\partial \mathbf {B}}{\partial t}$, $\operatorname{curl} \mathbf {H} = \frac{\partial \mathbf {D}}{\partial t} + \mathbf {j}$, $\operatorname{div} \mathbf {D} = \varrho $, $\operatorname{div} \mathbf {B} = 0$, which together with the constituting relations $\mathbf {D} = \varepsilon _0 \mathbf {E}$, $\mathbf {B} = \mu _0 \mathbf {H}$, form what we call today Maxwell’s equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare’s lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement the paper.
LA - eng
KW - Maxwell’s equations
UR - http://eudml.org/doc/298979
ER -

References

top
  1. Arthur, J.W., 10.1109/MAP.2013.6586627, IEEE Antennas and Propagation Magazine 55 (3) (2013), 61–81. (2013) DOI10.1109/MAP.2013.6586627
  2. Bork, A.M., Maxwell, displacement current, and symmetry, Amer. J. Phys. 31 (11) (1963), 854–859. (1963) 
  3. Crowe, M.J., A history of vector analysis: The evolution of the idea of a vectorial system, New York, Dover Publications, 1994. (1994) 
  4. Darrigol, O., Electrodynamics from Ampère to Einstein, Oxford University Press, 2003. (2003) 
  5. Diener, G., Weissbarth, J., Grossmann, F., Schmidt, R., 10.1119/1.4768196, Amer. J. Phys. 81 (2) (2013), 120–123. (2013) DOI10.1119/1.4768196
  6. Erlichson, H., 10.1119/1.18878, Amer. J. Phys. 66 (5) (1998), 385–391. (1998) DOI10.1119/1.18878
  7. Faraday, M., Experimental Researches in Electricity, New York, Dover, 1965, Reprint. (1965) 
  8. Fumeron, S., Berche, B., Moraes, F., 10.1119/10.0001754, Amer. J. Phys. 88 (12) (2020), 1083–1093. (2020) DOI10.1119/10.0001754
  9. Gauthier, N., 10.1119/1.13317, Amer. J. Phys. 51 (2) (1983), 168–170. (1983) DOI10.1119/1.13317
  10. Gibbs, J.W., Elements of vector analysis arranged for the use of students in physics, New Haven, Tuttle, Morehouse & Taylor, 1881–84, unpublished. 
  11. Gibbs, J.W., Wilson, E.B., Vector Analysis, New York, Charles Scribner's Sons, 1901. (1901) 
  12. Hon, G., Goldstein, B.R., Reflections on the Practice of Physics: James Clerk Maxwell’s Methodological Odyssey in Electromagnetism, Routledge, 2020. (2020) 
  13. Hunt, B.J., 10.1063/PT.3.1788, Physics Today 65 (11) (2012), 48–54. (2012) DOI10.1063/PT.3.1788
  14. Karam, R., Coimbra, D., Pietrocola, M., 10.1007/s11191-013-9624-3, Science & Education 23 (8) (2014), 1637–1661. (2014) DOI10.1007/s11191-013-9624-3
  15. Lee, J.M., Smooth manifolds, Introduction to smooth manifolds, Springer, New York, NY, 2012. (2012) MR2954043
  16. Lindel, I.V., Differential forms in electromagnetics, vol. 22, John Wiley & Sons, 2004. (2004) MR2046805
  17. Maxwell, J.C., On Faraday’s lines of force, Philosophical Magazine 4 (11) (1856), 404–405, Abstract of Maxwell . (1856) 
  18. Maxwell, J.C., On Faraday’s lines of force, Trans. Cambridge Philos. Soc. 10 (1858), 27–83, Reprinted in 1965, vol. 1, 155–229. (1858) 
  19. Maxwell, J.C., On physical lines of force, Philosophical Magazine 4 (21) (1861), 161–175, 281–291, 338–348, Plate. Philosophical Magazine 4, no. 23 (1862), 12–24, 85–95. Reprinted in 1965, vol. 1, 451–513. (1861) 
  20. Maxwell, J.C., A dynamical theory of the electromagnetic field, Philosophical Transactions of the Royal Society of London 155 (1865), 459–512, Reprinted in 1965, vol. 1, 526–597. (1865) 
  21. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford, Clarendon Press, 1873, Reprinted, Cambridge University Press, 2010. (1873) 
  22. Maxwell, J.C., The scientific papers of James Clerk Maxwell, Cambridge, University Press, 1890, Reprinted, two volumes bound as one. New York, Dover, 1965. (1890) 
  23. Schleifer, N., 10.1119/1.13325, Amer. J. Phys. 51 (1983), 1139–1145. (1983) DOI10.1119/1.13325
  24. Siegel, D.M., Innovation in Maxwell’s electromagnetic theory: molecular vortices, displacement current, and light, Cambridge University Press, 1991. (1991) 
  25. Spivak, M., A comprehensive introduction to differential geometry, Publish or Perish, Inc., Boston, Mass., 1999. (1999) 
  26. Thomson, W., Reprint of Papers on Electrostatics and Magnetism, Cambridge University Press, 2011, (Cambridge Library Collection - Physical Sciences). Cambridge. (2011) 
  27. Turnbull, G., Maxwell’s equations [Scanning Our Past], Proceedings of the IEEE 101, vol. 7, 2013, pp. 1801–1805. (2013) 
  28. Unz, H., 10.1109/TE.1963.4321796, IEEE Transactions on education, 6 1 (1963), 30–33. (1963) DOI10.1109/TE.1963.4321796
  29. Vinogradov, A.P., 10.1070/PU2002v045n03ABEH001079, Physics-Uspekhi 45 (3) (2002), 331–338. (2002) DOI10.1070/PU2002v045n03ABEH001079
  30. Warnick, K.F., Karl, F., Selfridge, R.H., Arnold, D.V., 10.1109/13.554670, IEEE Transactions on education 40 1 (1997), 53–68. (1997) DOI10.1109/13.554670
  31. Youtube channel,, Ampère et l’histoire de l’électricité. Coulomb invente une balance pour l’électricité, https://www.youtube.com/watch?v=omobCEi20ng. 
  32. Youtube channel,, The Royal Institution - Ri Archives. Prelude To Power: 1931 Michael Faraday Celebration, https://www.youtube.com/watch?v=mxwVIOHEG4I. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.