Quasicontinuous spaces

Jing Lu; Bin Zhao; Kaiyun Wang; Dong Sheng Zhao

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 4, page 513-526
  • ISSN: 0010-2628

Abstract

top
We lift the notion of quasicontinuous posets to the topology context, called quasicontinuous spaces, and further study such spaces. The main results are: (1) A T 0 space ( X , τ ) is a quasicontinuous space if and only if S I ( X ) is locally hypercompact if and only if ( τ S I , ) is a hypercontinuous lattice; (2) a T 0 space X is an S I -continuous space if and only if X is a meet continuous and quasicontinuous space; (3) if a C -space X is a well-filtered poset under its specialization order, then X is a quasicontinuous space if and only if it is a quasicontinuous domain under the specialization order; (4) there exists an adjunction between the category of quasicontinuous domains and the category of quasicontinuous spaces which are well-filtered posets under their specialization orders.

How to cite

top

Lu, Jing, et al. "Quasicontinuous spaces." Commentationes Mathematicae Universitatis Carolinae 62 63.4 (2022): 513-526. <http://eudml.org/doc/299034>.

@article{Lu2022,
abstract = {We lift the notion of quasicontinuous posets to the topology context, called quasicontinuous spaces, and further study such spaces. The main results are: (1) A $T_\{0\}$ space $(X,\tau )$ is a quasicontinuous space if and only if $SI(X)$ is locally hypercompact if and only if $(\tau _\{SI\},\subseteq )$ is a hypercontinuous lattice; (2) a $T_\{0\}$ space $X$ is an $SI$-continuous space if and only if $X$ is a meet continuous and quasicontinuous space; (3) if a $C$-space $X$ is a well-filtered poset under its specialization order, then $X$ is a quasicontinuous space if and only if it is a quasicontinuous domain under the specialization order; (4) there exists an adjunction between the category of quasicontinuous domains and the category of quasicontinuous spaces which are well-filtered posets under their specialization orders.},
author = {Lu, Jing, Zhao, Bin, Wang, Kaiyun, Zhao, Dong Sheng},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasicontinuous space; hypercontinuous lattice; $SI$-continuous space; locally hypercompact space; meet continuous space},
language = {eng},
number = {4},
pages = {513-526},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Quasicontinuous spaces},
url = {http://eudml.org/doc/299034},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Lu, Jing
AU - Zhao, Bin
AU - Wang, Kaiyun
AU - Zhao, Dong Sheng
TI - Quasicontinuous spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 4
SP - 513
EP - 526
AB - We lift the notion of quasicontinuous posets to the topology context, called quasicontinuous spaces, and further study such spaces. The main results are: (1) A $T_{0}$ space $(X,\tau )$ is a quasicontinuous space if and only if $SI(X)$ is locally hypercompact if and only if $(\tau _{SI},\subseteq )$ is a hypercontinuous lattice; (2) a $T_{0}$ space $X$ is an $SI$-continuous space if and only if $X$ is a meet continuous and quasicontinuous space; (3) if a $C$-space $X$ is a well-filtered poset under its specialization order, then $X$ is a quasicontinuous space if and only if it is a quasicontinuous domain under the specialization order; (4) there exists an adjunction between the category of quasicontinuous domains and the category of quasicontinuous spaces which are well-filtered posets under their specialization orders.
LA - eng
KW - quasicontinuous space; hypercontinuous lattice; $SI$-continuous space; locally hypercompact space; meet continuous space
UR - http://eudml.org/doc/299034
ER -

References

top
  1. Adámek J., Herrlich H., Strecker G. E., Abstract and Concrete Categories, The Joy of Cats, Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1990. MR1051419
  2. Andradi H., Ho W. K., On a new convergence class in sup-sober spaces, available at arXiv:1709.03269v1 [cs.LO] (2017), 13 pages. 
  3. Andradi H., Shen C., Ho W. K., Zhao D., 10.2298/FIL1817017A, Filomat 32 (2018), no. 17, 6017–6029. MR3899335DOI10.2298/FIL1817017A
  4. Bandelt H.-J., Erné M., 10.1016/0022-4049(83)90057-9, J. Pure and Appl. Algebra 30 (1983), no. 3, 219–226. MR0724033DOI10.1016/0022-4049(83)90057-9
  5. Baranga A., 10.1016/0012-365X(94)00307-5, Discrete Math. 152 (1996), no. 1–3, 33–45. MR1388630DOI10.1016/0012-365X(94)00307-5
  6. Engelking R., General Topology, Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warszawa, 1977. Zbl0684.54001MR0500780
  7. Erné M., The ABC of order and topology, Category Theory at Work, Bremen, 1990, Res. Exp. Math., 18, Heldermann, Berlin, 1991, pages 57–83. MR1147919
  8. Erné M., 10.1023/A:1008657800278, Applications of ordered sets in computer science, Braunschweig, 1996, Appl. Categ. Structures 7 (1999), no. 1–2, 31–70. MR1714179DOI10.1023/A:1008657800278
  9. Erné M., 10.1016/j.topol.2009.03.029, Topology Appl. 156 (2009), no. 12, 2054–2069. MR2532134DOI10.1016/j.topol.2009.03.029
  10. Gierz G., Hofmann K. H., Keimel K., Lawson J. D., Mislove M., Scott D. S., Continuous Lattices and Domains, Encyclopedia of Mathematics and Its Applications, 93, Cambridge University Press, Cambridge, 2003. Zbl1088.06001MR1975381
  11. Gierz G., Lawson J. D., 10.1216/RMJ-1981-11-2-271, Rocky Mountain J. Math. 11 (1981), no. 2, 271–296. MR0619676DOI10.1216/RMJ-1981-11-2-271
  12. Gierz G., Lawson J. D., Stralka A., Quasicontinuous posets, Houston J. Math. 9 (1983), no. 2, 191–208. MR0703268
  13. Goubault-Larrecq J., Non-Hausdorff Topology and Domain Theory, New Mathematical Monographs, 22, Cambridge University Press, Cambridge, 2013. MR3086734
  14. Heckmann R., Keimel K., Quasicontinuous domains and the Smyth powerdomain, Proc. of the Twenty-Ninth Conf. Mathematical Foundations of Programming Semantics, MFPS XXIX, Electron. Notes Theor. Comput. Sci., 298, Elsevier, Amsterdam, 2013, pages 215–232. MR3138523
  15. Kou H., Liu Y.-M., Luo M.-K., On meet-continuous dcpos, Domain Theory, Logic and Computation, Semant. Struct. Comput., 3, Kluwer Acad. Publ., Dordrecht, 2003, pages 137–149. MR2068007
  16. Lawson J. D., 10.1016/0166-8641(85)90059-8, Topology Appl. 21 (1985), no. 1, 73–76. MR0808725DOI10.1016/0166-8641(85)90059-8
  17. Lu J., Zhao B., Wang K., 10.1016/j.topol.2019.06.032, Topology Appl. 264 (2019), 313–321. MR3975753DOI10.1016/j.topol.2019.06.032
  18. Mao X., Xu L., 10.1007/s11083-007-9054-4, Order 23 (2006), no. 4, 359–369. MR2309700DOI10.1007/s11083-007-9054-4
  19. Mao X., Xu L., 10.1016/j.tcs.2009.06.017, Theoret. Comput. Sci. 410 (2009), no. 42, 4234–4240. MR2561483DOI10.1016/j.tcs.2009.06.017
  20. Venugopalan P., 10.1007/BF02573390, Semigroup Forum 41 (1990), no. 2, 193–200. MR1057590DOI10.1007/BF02573390
  21. Wright J. B., Wagner E. G., Thatcher J. W., 10.1016/0304-3975(78)90040-3, Theoret. Comput. Sci. 7 (1978), no. 1, 57–77. MR0480224DOI10.1016/0304-3975(78)90040-3
  22. Zhao D., Ho W. K, 10.1016/j.jlamp.2014.10.003, J. Log. Algebr. Methods Program. 84 (2015), no. 1, 185–195. MR3292951DOI10.1016/j.jlamp.2014.10.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.