Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 3, page 315-327
 - ISSN: 0010-2628
 
Access Full Article
topAbstract
topHow to cite
topTardif, Claude. "Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices." Commentationes Mathematicae Universitatis Carolinae 62 63.3 (2022): 315-327. <http://eudml.org/doc/299041>.
@article{Tardif2022,
	abstract = {We prove that for any $c \ge 5$, there exists an infinite family $(G_n )_\{n\in \mathbb \{N\}\}$ of graphs such that $\chi (G_n) > c$ for all $n\in \mathbb \{N\}$ and $\chi (G_m \times G_n) \le c$ for all $m \ne n$. These counterexamples to Hedetniemi’s conjecture show that the Boolean lattice of exponential graphs with $K_c$ as a base is infinite for $c \ge 5$.},
	author = {Tardif, Claude},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {categorical product; graph colouring; Hedetniemi's conjecture},
	language = {eng},
	number = {3},
	pages = {315-327},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices},
	url = {http://eudml.org/doc/299041},
	volume = {62 63},
	year = {2022},
}
TY  - JOUR
AU  - Tardif, Claude
TI  - Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 62 63
IS  - 3
SP  - 315
EP  - 327
AB  - We prove that for any $c \ge 5$, there exists an infinite family $(G_n )_{n\in \mathbb {N}}$ of graphs such that $\chi (G_n) > c$ for all $n\in \mathbb {N}$ and $\chi (G_m \times G_n) \le c$ for all $m \ne n$. These counterexamples to Hedetniemi’s conjecture show that the Boolean lattice of exponential graphs with $K_c$ as a base is infinite for $c \ge 5$.
LA  - eng
KW  - categorical product; graph colouring; Hedetniemi's conjecture
UR  - http://eudml.org/doc/299041
ER  - 
References
top- Alishahi M., Hajiabolhassan H., 10.1016/j.disc.2018.02.007, Discrete Math. 341 (2018), no. 5, 1316–1324. MR3777048DOI10.1016/j.disc.2018.02.007
 - Baum S., Stiebitz M., Coloring of Graphs without Short Odd Paths between Vertices of the Same Color Class, Syddansk Universitet, Odense, 2005.
 - Duffus D., Sauer N., 10.1016/0012-365X(94)00298-W, Discrete Math. 152 (1996), no. 1–3, 125–139. MR1388636DOI10.1016/0012-365X(94)00298-W
 - El-Zahar M., Sauer N. W., 10.1007/BF02579374, Combinatorica 5 (1985), no. 2, 121–126. MR0815577DOI10.1007/BF02579374
 - Godsil C., Roberson D. E., Šámal R., Severini S., 10.1007/s00493-014-3132-1, Combinatorica 36 (2016), no. 4, 395–415. MR3537033DOI10.1007/s00493-014-3132-1
 - Gyárfás A., Jensen T., Stiebitz M., 10.1002/jgt.10165, J. Graph Theory 46 (2004), no. 1, 1–14. MR2051464DOI10.1002/jgt.10165
 - Hahn G., Tardif C., Graph homomorphisms: structure and symmetry, Graph symmetry, Montreal, 1996, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 497, Kluwer Acad. Publ., Dordrecht, 1997, pages 107–166. MR1468789
 - Hajiabolhassan H., 10.1016/j.disc.2009.01.004, Discrete Math. 309 (2009), no. 13, 4299–4305. MR2519165DOI10.1016/j.disc.2009.01.004
 - Hajiabolhassan H., Taherkhani A., 10.37236/289, Electron. J. Combin. 17 (2010), no. 1, Research Paper 17, 16 pages. MR2587748DOI10.37236/289
 - He X., Wigderson Y., 10.1016/j.jctb.2020.03.003, J. Combin. Theory Ser. B 146 (2021), 485–494. MR4177963DOI10.1016/j.jctb.2020.03.003
 - Hedetniemi S. T., Homomorphisms of Graphs and Automata, Thesis Ph.D., University of Michigan, Michigan, 1966. MR2615860
 - Shitov Y., Counterexamples to Hedetniemi's conjecture, Ann. of Math. (2) 190 (2019), no. 2, 663–667. MR3997132
 - Simonyi G., Tardos G., 10.1007/s00493-006-0034-x, Combinatorica 26 (2006), no. 5, 587–626. MR2279672DOI10.1007/s00493-006-0034-x
 - Simonyi G., Zsbán A., On topological relaxations of chromatic conjectures, European J. Combin. 31 (2010), no. 8, 2110–2119. MR2718285
 - Tardif C., 10.1007/s11083-010-9162-4, Order 28 (2011), no. 2, 181–191. MR2819218DOI10.1007/s11083-010-9162-4
 - Tardif C., 10.1007/s00493-021-4781-5, Combinatorica 42 (2022), no. 2, 301–308. MR4426302DOI10.1007/s00493-021-4781-5
 - Tardif C., Zhu X., 10.1016/S0012-365X(01)00102-9, Algebraic and topological methods in graph theory, Discrete Math. 244 (2002), no. 1–3, 461–471. MR1844054DOI10.1016/S0012-365X(01)00102-9
 - Tardif C., Zhu X., 10.37236/8787, Electron. J. Combin. 26 (2019), no. 4, Paper No. 4.32, 5 pages. MR4039338DOI10.37236/8787
 - Wrochna M., 10.1016/j.jctb.2019.02.008, J. Combin. Theory Ser. B 139 (2019), 267–295. MR4010192DOI10.1016/j.jctb.2019.02.008
 - Wrochna M., Smaller counterexamples to Hedetniemi's conjecture, available at arXiv:2012.13558 [math.CO] (2020), 9 pages.
 - Zhu X., A survey on Hedetniemi's conjecture, Taiwanese J. Math. 2 (1998), no. 1, 1–24. MR1609464
 - Zhu X., 10.1016/j.ejc.2011.03.004, European J. Combin. 32 (2011), no. 7, 1168–1175. MR2825542DOI10.1016/j.ejc.2011.03.004
 - Zhu X., A note on the Poljak–Rödl function, Electron. J. Combin. 27 (2020), no. 3, Paper No. 3.2, 4 pages. MR4245115
 - Zhu X., 10.1016/j.jctb.2020.09.005, J. Combin. Theory Ser. B 146 (2021), 141–150. MR4153236DOI10.1016/j.jctb.2020.09.005
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.