Mersenne numbers as a difference of two Lucas numbers
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 3, page 269-276
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAlan, Murat. "Mersenne numbers as a difference of two Lucas numbers." Commentationes Mathematicae Universitatis Carolinae 62 63.3 (2022): 269-276. <http://eudml.org/doc/299043>.
@article{Alan2022,
abstract = {Let $(L_n)_\{n\ge 0\}$ be the Lucas sequence. We show that the Diophantine equation $ L_n-L_m=M_k$ has only the nonnegative integer solutions $(n,m,k)= (2,0,1)$, $(3, 1, 2)$, $(3, 2, 1)$, $(4, 3, 2)$, $(5, 3, 3)$, $(6, 2, 4)$, $(6, 5, 3)$ where $ M_k=2^k-1 $ is the $k$th Mersenne number and $ n > m$.},
author = {Alan, Murat},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lucas number; Mersenne number; Diophantine equation; linear forms in logarithm},
language = {eng},
number = {3},
pages = {269-276},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Mersenne numbers as a difference of two Lucas numbers},
url = {http://eudml.org/doc/299043},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Alan, Murat
TI - Mersenne numbers as a difference of two Lucas numbers
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 3
SP - 269
EP - 276
AB - Let $(L_n)_{n\ge 0}$ be the Lucas sequence. We show that the Diophantine equation $ L_n-L_m=M_k$ has only the nonnegative integer solutions $(n,m,k)= (2,0,1)$, $(3, 1, 2)$, $(3, 2, 1)$, $(4, 3, 2)$, $(5, 3, 3)$, $(6, 2, 4)$, $(6, 5, 3)$ where $ M_k=2^k-1 $ is the $k$th Mersenne number and $ n > m$.
LA - eng
KW - Lucas number; Mersenne number; Diophantine equation; linear forms in logarithm
UR - http://eudml.org/doc/299043
ER -
References
top- Baker A., Davenport H., The equations and , Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR0248079
- Bravo J. J., Gómez C. A., 10.3336/gm.51.2.02, Glas. Matemat. Ser. III 51(71), (2016), no. 2, 307–319. MR3580200DOI10.3336/gm.51.2.02
- Bravo J. J., Luca F., 10.5486/PMD.2013.5390, Publ. Math. Debrecen 82 (2013), no. 3–4, 623–639. MR3066434DOI10.5486/PMD.2013.5390
- Bravo J. J., Luca F., Powers of two as sums of two Lucas numbers, J. Integer Seq. 17 (2014), no. 8, Article 14.8.3, 12 pages. MR3248227
- Demirtürk Bitim B., 10.1007/s10998-019-00287-0, Period. Math. Hungar. 79 (2019), no. 2, 210–217. MR4022203DOI10.1007/s10998-019-00287-0
- Dujella A., Pethö A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291–306. MR1645552
- Erduvan F., Keskin R., 10.3906/mat-1810-83, Turkish J. Math. 43 (2019), no. 3, 1115–1123. MR3962520DOI10.3906/mat-1810-83
- Hardy G. H., Wright E. M., An Introduction to the Theory of Numbers, The Clarendon Press, Oxford University Press, New York, 1979. MR0568909
- Kebli S., Kihel O., Larone J., Luca F., 10.1016/j.jnt.2020.08.004, J. Number Theory 220 (2021), 107–127. MR4177538DOI10.1016/j.jnt.2020.08.004
- Koshy T., Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001. MR1855020
- Matveev E. M., An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian); translation in Izv. Math. 64 (2000), no. 6, 1217–1269. MR1817252
- Normenyo B. V., Luca F., Togbé A., Repdigits as sums of four Fibonacci or Lucas numbers, J. Integer Seq. 21 (2018), no. 7, Art. 18.7.7, 30 pages. MR3858063
- Şiar Z., Keskin R., 10.4064/cm7485-12-2018, Colloq. Math. 159 (2020), no. 1, 119–126. MR4036721DOI10.4064/cm7485-12-2018
- Trojovský P., 10.18514/MMN.2018.1750, Miskolc Math. Notes 19 (2018), no. 1, 641–648. MR3895605DOI10.18514/MMN.2018.1750
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.