Performance analysis of least squares algorithm for multivariable stochastic systems
Ziming Wang; Yiming Xing; Xinghua Zhu
Kybernetika (2023)
- Volume: 59, Issue: 1, page 28-44
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWang, Ziming, Xing, Yiming, and Zhu, Xinghua. "Performance analysis of least squares algorithm for multivariable stochastic systems." Kybernetika 59.1 (2023): 28-44. <http://eudml.org/doc/299061>.
@article{Wang2023,
abstract = {In this paper, we consider the parameter estimation problem for the multivariable system. A recursive least squares algorithm is studied by minimizing the accumulative prediction error. By employing the stochastic Lyapunov function and the martingale estimate methods, we provide the weakest possible data conditions for convergence analysis. The upper bound of accumulative regret is also provided. Various simulation examples are given, and the results demonstrate that the convergence rate of the algorithm depends on the parameter dimension and output dimension.},
author = {Wang, Ziming, Xing, Yiming, Zhu, Xinghua},
journal = {Kybernetika},
keywords = {least squares; martingale theory; non-persistent excitation},
language = {eng},
number = {1},
pages = {28-44},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Performance analysis of least squares algorithm for multivariable stochastic systems},
url = {http://eudml.org/doc/299061},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Wang, Ziming
AU - Xing, Yiming
AU - Zhu, Xinghua
TI - Performance analysis of least squares algorithm for multivariable stochastic systems
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 1
SP - 28
EP - 44
AB - In this paper, we consider the parameter estimation problem for the multivariable system. A recursive least squares algorithm is studied by minimizing the accumulative prediction error. By employing the stochastic Lyapunov function and the martingale estimate methods, we provide the weakest possible data conditions for convergence analysis. The upper bound of accumulative regret is also provided. Various simulation examples are given, and the results demonstrate that the convergence rate of the algorithm depends on the parameter dimension and output dimension.
LA - eng
KW - least squares; martingale theory; non-persistent excitation
UR - http://eudml.org/doc/299061
ER -
References
top- Chen, H.-F., Guo, L., , Acta Math. Appl. Sinica 2 (1985), 2, 133-145. DOI
- Chen, H.-F., Guo, L., , SIAM J. Control Optim. 28 (1990), 3, 513-527. MR1047420DOI
- Chen, H.-F., Guo, L., Identification and Stochastic Adaptive Control. Volume 5., Springer Science Business Media, 1991. MR1134780
- Doyle, J. C., Francis, B. A., Tannenbaum, A. R., Feedback Control Theory., Courier Corporation, 2013. MR1200235
- Durrett, R., Probability: Theory and Examples. Vol. 49., Cambridge University Press, 2019. MR3930614
- Gan, D., Liu, Z. X., , IFAC-PapersOnLine 53 (2020), 2, 2397-2402. DOI
- Guo, L., , SIAM J. Control Optim. 32 (1994), 5, 1195-1225, 1994. MR1288247DOI
- Guo, L., , Automatica 31 (1995), 3, 435-450. MR1321012DOI
- Guo, L., Time-Varying Stochastic Systems, Stability and Adaptive Theory. Second Edition., Science Press, Beijing 2020.
- Guo, L., Ljung, L., Priouret, P., , Int. J. Adaptive Control Signal Process. 7 (1993), 6, 525-537. MR1255909DOI
- Haykin, S., Radar signal processing., IEEE Signal Process. Magazine 2 (1993), 2, 2-18.
- Lai, T. L., 10.1016/0196-8858(86)90004-7, Advances Appl. Math. 7 (1986), 1, 23-45. MR0834218DOI10.1016/0196-8858(86)90004-7
- Lai, T. L., Wei, Ch. Z., , Ann. Statist. 10 (1982), 1, 154-166. MR0642726DOI
- Li, J., Ding, F., Yang, G., Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems., Math. Comput. Modell. 55 (2012), 3-4, :442-450. MR2887389
- Li, J., Stoica, P., MIMO Radar Signal Processing., John Wiley and Sons, 2008.
- Liu, Y., Ding, F., , Applied Math. Modell. 37 (2013), 1-2, 476-483. MR2994195DOI
- Marelli, D., Fu, M., , IEEE Trans. Signal Process. 58 (2010), 5, 2521-2533. MR2789402DOI
- Moore, J. B., , Automatica 14 (1978), 5, 505-509. DOI
- Niedzwiecki, M., Guo, L., Nonasymptotic results for finite-memory wls filters., In: Proc. 28th IEEE Conference on Decision and Control, Vol. 2, 1989, pp. 1785-1790. MR1039029
- Richards, F. S. G., , J. Roy. Statist. Soc,: Series B (Methodological) 23 (1961), 2, 469-475. MR0132633DOI
- Sen, A., Sinha, N. K., , Int. J. Systems Sci. 7 (1976), 4, 461-471. MR0424314DOI
- Subudhi, B., Jena, D., Nonlinear system identification of a twin rotor mimo system., In: IEEE Region 10 Conference 2009, pp. 1-6.
- Vaezi, M., Izadian, A., , IEEE Trans. Control Systems Technol. 23 (2015), 6, :2077-2086. DOI
- Wang, W., Ding, F., Dai, J., , Appl. Math. Modell. 36 (2012), 5, 1842-1853. MR2878151DOI
- Vogels, T. P., Rajan, K., Abbott, L. F., , Ann. Rev. Neurosci. 28 (2005), 357-376. MR1985615DOI
- Widrow, B., Stearns, S. D., Adaptive Signal Processing., Prentice-Hall Englewood Cliffs, NJ 1985.
- Zhang, Y., , Math. Computer Modell. 53 (2011), 9-10, 1810-1819. MR2782867DOI
- Zhang, Y., Cui, G., , Appl. Math- Modell. 35 (2011), 4, 1709-1716. MR2763812DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.