Performance analysis of least squares algorithm for multivariable stochastic systems

Ziming Wang; Yiming Xing; Xinghua Zhu

Kybernetika (2023)

  • Volume: 59, Issue: 1, page 28-44
  • ISSN: 0023-5954

Abstract

top
In this paper, we consider the parameter estimation problem for the multivariable system. A recursive least squares algorithm is studied by minimizing the accumulative prediction error. By employing the stochastic Lyapunov function and the martingale estimate methods, we provide the weakest possible data conditions for convergence analysis. The upper bound of accumulative regret is also provided. Various simulation examples are given, and the results demonstrate that the convergence rate of the algorithm depends on the parameter dimension and output dimension.

How to cite

top

Wang, Ziming, Xing, Yiming, and Zhu, Xinghua. "Performance analysis of least squares algorithm for multivariable stochastic systems." Kybernetika 59.1 (2023): 28-44. <http://eudml.org/doc/299061>.

@article{Wang2023,
abstract = {In this paper, we consider the parameter estimation problem for the multivariable system. A recursive least squares algorithm is studied by minimizing the accumulative prediction error. By employing the stochastic Lyapunov function and the martingale estimate methods, we provide the weakest possible data conditions for convergence analysis. The upper bound of accumulative regret is also provided. Various simulation examples are given, and the results demonstrate that the convergence rate of the algorithm depends on the parameter dimension and output dimension.},
author = {Wang, Ziming, Xing, Yiming, Zhu, Xinghua},
journal = {Kybernetika},
keywords = {least squares; martingale theory; non-persistent excitation},
language = {eng},
number = {1},
pages = {28-44},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Performance analysis of least squares algorithm for multivariable stochastic systems},
url = {http://eudml.org/doc/299061},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Wang, Ziming
AU - Xing, Yiming
AU - Zhu, Xinghua
TI - Performance analysis of least squares algorithm for multivariable stochastic systems
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 1
SP - 28
EP - 44
AB - In this paper, we consider the parameter estimation problem for the multivariable system. A recursive least squares algorithm is studied by minimizing the accumulative prediction error. By employing the stochastic Lyapunov function and the martingale estimate methods, we provide the weakest possible data conditions for convergence analysis. The upper bound of accumulative regret is also provided. Various simulation examples are given, and the results demonstrate that the convergence rate of the algorithm depends on the parameter dimension and output dimension.
LA - eng
KW - least squares; martingale theory; non-persistent excitation
UR - http://eudml.org/doc/299061
ER -

References

top
  1. Chen, H.-F., Guo, L., , Acta Math. Appl. Sinica 2 (1985), 2, 133-145. DOI
  2. Chen, H.-F., Guo, L., , SIAM J. Control Optim. 28 (1990), 3, 513-527. MR1047420DOI
  3. Chen, H.-F., Guo, L., Identification and Stochastic Adaptive Control. Volume 5., Springer Science Business Media, 1991. MR1134780
  4. Doyle, J. C., Francis, B. A., Tannenbaum, A. R., Feedback Control Theory., Courier Corporation, 2013. MR1200235
  5. Durrett, R., Probability: Theory and Examples. Vol. 49., Cambridge University Press, 2019. MR3930614
  6. Gan, D., Liu, Z. X., , IFAC-PapersOnLine 53 (2020), 2, 2397-2402. DOI
  7. Guo, L., , SIAM J. Control Optim. 32 (1994), 5, 1195-1225, 1994. MR1288247DOI
  8. Guo, L., , Automatica 31 (1995), 3, 435-450. MR1321012DOI
  9. Guo, L., Time-Varying Stochastic Systems, Stability and Adaptive Theory. Second Edition., Science Press, Beijing 2020. 
  10. Guo, L., Ljung, L., Priouret, P., , Int. J. Adaptive Control Signal Process. 7 (1993), 6, 525-537. MR1255909DOI
  11. Haykin, S., Radar signal processing., IEEE Signal Process. Magazine 2 (1993), 2, 2-18. 
  12. Lai, T. L., 10.1016/0196-8858(86)90004-7, Advances Appl. Math. 7 (1986), 1, 23-45. MR0834218DOI10.1016/0196-8858(86)90004-7
  13. Lai, T. L., Wei, Ch. Z., , Ann. Statist. 10 (1982), 1, 154-166. MR0642726DOI
  14. Li, J., Ding, F., Yang, G., Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems., Math. Comput. Modell. 55 (2012), 3-4, :442-450. MR2887389
  15. Li, J., Stoica, P., MIMO Radar Signal Processing., John Wiley and Sons, 2008. 
  16. Liu, Y., Ding, F., , Applied Math. Modell. 37 (2013), 1-2, 476-483. MR2994195DOI
  17. Marelli, D., Fu, M., , IEEE Trans. Signal Process. 58 (2010), 5, 2521-2533. MR2789402DOI
  18. Moore, J. B., , Automatica 14 (1978), 5, 505-509. DOI
  19. Niedzwiecki, M., Guo, L., Nonasymptotic results for finite-memory wls filters., In: Proc. 28th IEEE Conference on Decision and Control, Vol. 2, 1989, pp. 1785-1790. MR1039029
  20. Richards, F. S. G., , J. Roy. Statist. Soc,: Series B (Methodological) 23 (1961), 2, 469-475. MR0132633DOI
  21. Sen, A., Sinha, N. K., , Int. J. Systems Sci. 7 (1976), 4, 461-471. MR0424314DOI
  22. Subudhi, B., Jena, D., Nonlinear system identification of a twin rotor mimo system., In: IEEE Region 10 Conference 2009, pp. 1-6. 
  23. Vaezi, M., Izadian, A., , IEEE Trans. Control Systems Technol. 23 (2015), 6, :2077-2086. DOI
  24. Wang, W., Ding, F., Dai, J., , Appl. Math. Modell. 36 (2012), 5, 1842-1853. MR2878151DOI
  25. Vogels, T. P., Rajan, K., Abbott, L. F., , Ann. Rev. Neurosci. 28 (2005), 357-376. MR1985615DOI
  26. Widrow, B., Stearns, S. D., Adaptive Signal Processing., Prentice-Hall Englewood Cliffs, NJ 1985. 
  27. Zhang, Y., , Math. Computer Modell. 53 (2011), 9-10, 1810-1819. MR2782867DOI
  28. Zhang, Y., Cui, G., , Appl. Math- Modell. 35 (2011), 4, 1709-1716. MR2763812DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.