Existence of weak solutions for elliptic Dirichlet problems with variable exponent

Sungchol Kim; Dukman Ri

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 3, page 283-302
  • ISSN: 0862-7959

Abstract

top
This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type - div a ( x , u , u ) + b ( x , u , u ) = 0 in Ω , u = 0 on Ω , where Ω is a bounded domain of n , n 2 . In particular, we do not require strict monotonicity of the principal part a ( x , z , · ) , while the approach is based on the variational method and results of the variable exponent function spaces.

How to cite

top

Kim, Sungchol, and Ri, Dukman. "Existence of weak solutions for elliptic Dirichlet problems with variable exponent." Mathematica Bohemica 148.3 (2023): 283-302. <http://eudml.org/doc/299098>.

@article{Kim2023,
abstract = {This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type \[ \{\left\lbrace \begin\{array\}\{ll\} -\{\rm div\} a(x, u, \nabla u)+b(x, u, \nabla u)=0 &\text\{in\} \ \Omega ,\\ u=0 &\text\{on\} \ \partial \Omega , \end\{array\}\right.\} \] where $\Omega $ is a bounded domain of $\mathbb \{R\}^n$, $n\ge 2$. In particular, we do not require strict monotonicity of the principal part $a(x,z,\cdot )$, while the approach is based on the variational method and results of the variable exponent function spaces.},
author = {Kim, Sungchol, Ri, Dukman},
journal = {Mathematica Bohemica},
keywords = {variable exponent; existence; variational methods; Dirichlet problem},
language = {eng},
number = {3},
pages = {283-302},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of weak solutions for elliptic Dirichlet problems with variable exponent},
url = {http://eudml.org/doc/299098},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Kim, Sungchol
AU - Ri, Dukman
TI - Existence of weak solutions for elliptic Dirichlet problems with variable exponent
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 3
SP - 283
EP - 302
AB - This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type \[ {\left\lbrace \begin{array}{ll} -{\rm div} a(x, u, \nabla u)+b(x, u, \nabla u)=0 &\text{in} \ \Omega ,\\ u=0 &\text{on} \ \partial \Omega , \end{array}\right.} \] where $\Omega $ is a bounded domain of $\mathbb {R}^n$, $n\ge 2$. In particular, we do not require strict monotonicity of the principal part $a(x,z,\cdot )$, while the approach is based on the variational method and results of the variable exponent function spaces.
LA - eng
KW - variable exponent; existence; variational methods; Dirichlet problem
UR - http://eudml.org/doc/299098
ER -

References

top
  1. Boccardo, L., Dacorogna, B., 10.1080/03605308408820358, Commun. Partial Differ. Equations 9 (1984), 1107-1117. (1984) Zbl0562.47041MR0759239DOI10.1080/03605308408820358
  2. Bogachev, V. I., 10.1007/978-3-540-34514-5, Springer, Berlin (2007). (2007) Zbl1120.28001MR2267655DOI10.1007/978-3-540-34514-5
  3. Bonanno, G., 10.1016/j.jmaa.2014.04.016, J. Math. Anal. Appl. 418 (2014), 812-827. (2014) Zbl1312.35111MR3206681DOI10.1016/j.jmaa.2014.04.016
  4. Chen, Y., Levine, S., Rao, M., 10.1137/050624522, SIAM J. Appl. Math. 66 (2006), 1383-1406. (2006) Zbl1102.49010MR2246061DOI10.1137/050624522
  5. Cruz-Uribe, D. V., Fiorenza, A., 10.1007/978-3-0348-0548-3, Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). (2013) Zbl1268.46002MR3026953DOI10.1007/978-3-0348-0548-3
  6. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  7. Fan, X., 10.1016/j.jmaa.2006.07.093, J. Math. Anal. Appl. 330 (2007), 665-682. (2007) Zbl1206.35103MR2302951DOI10.1016/j.jmaa.2006.07.093
  8. Fan, X., 10.1016/j.jmaa.2008.05.086, J. Math. Anal. Appl. 352 (2009), 85-98. (2009) Zbl1163.35026MR2499888DOI10.1016/j.jmaa.2008.05.086
  9. Fan, X., 10.1002/mana.200810203, Math. Nachr. 284 (2011), 1435-1445. (2011) Zbl1234.35111MR2832655DOI10.1002/mana.200810203
  10. Fan, X., Shen, J., Zhao, D., 10.1006/jmaa.2001.7618, J. Math. Anal. Appl. 262 (2001), 749-760. (2001) Zbl0995.46023MR1859337DOI10.1006/jmaa.2001.7618
  11. Fan, X., Zhang, Q., 10.1016/S0362-546X(02)00150-5, Nonlinear Anal., Theory Methods Appl., Ser. A 52 (2003), 1843-1852. (2003) Zbl1146.35353MR1954585DOI10.1016/S0362-546X(02)00150-5
  12. Fan, X., Zhang, Q., Zhao, D., 10.1016/j.jmaa.2003.11.020, J. Math. Anal. Appl. 302 (2005), 306-317. (2005) Zbl1072.35138MR2107835DOI10.1016/j.jmaa.2003.11.020
  13. Fu, Y., Yang, M., 10.1186/1029-242X-2014-23, J. Inequal. Appl. 2014 (2014), Article ID 23, 16 pages. (2014) Zbl1310.35112MR3213021DOI10.1186/1029-242X-2014-23
  14. Fu, Y., Yu, M., 10.1016/j.jmaa.2009.10.003, J. Math. Anal. Appl. 363 (2010), 679-689. (2010) Zbl1182.35115MR2564887DOI10.1016/j.jmaa.2009.10.003
  15. Galewski, M., 10.1016/j.jmaa.2006.03.006, J. Math. Anal. Appl. 326 (2007), 352-362. (2007) Zbl1159.35365MR2277787DOI10.1016/j.jmaa.2006.03.006
  16. Gossez, J.-P., Mustonen, V., Pseudo-monotonicity and the Leray-Lions condition, Differ. Integral Equ. 6 (1993), 37-45. (1993) Zbl0786.35055MR1190164
  17. Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M., 10.1016/j.na.2010.02.033, Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. (2010) Zbl1188.35072MR2639204DOI10.1016/j.na.2010.02.033
  18. Ji, C., 10.1016/j.na.2010.12.013, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2908-2915. (2011) Zbl1210.35132MR2785386DOI10.1016/j.na.2010.12.013
  19. Kim, S., Ri, D., 10.1016/j.na.2019.02.016, Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 170-192. (2019) Zbl1419.49045MR3926581DOI10.1016/j.na.2019.02.016
  20. Kováčik, O., Rákosník, J., 10.21136/CMJ.1991.102493, Czech. Math. J. 41 (1991), 592-618. (1991) Zbl0784.46029MR1134951DOI10.21136/CMJ.1991.102493
  21. Lions, J. L., Quelques méthodes de résolution des problémes aux limites nonlinéaires, Etudes mathematiques. Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
  22. Mashiyev, R. A., Cekic, B., Buhrii, O. M., 10.14232/ejqtde.2010.1.65, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 65, 13 pages. (2010) Zbl1207.35142MR2735026DOI10.14232/ejqtde.2010.1.65
  23. Mihăilescu, M., Repovš, D., 10.1016/j.na.2011.09.034, Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 975-981. (2012) Zbl1269.35009MR2847471DOI10.1016/j.na.2011.09.034
  24. Pucci, P., Zhang, Q., 10.1016/j.jde.2014.05.023, J. Differ. Equations 257 (2014), 1529-1566. (2014) Zbl1292.35135MR3217048DOI10.1016/j.jde.2014.05.023
  25. Rădulescu, V. D., 10.1016/j.na.2014.11.007, Nonlinear Anal., Theory Methods Appl., Ser. A 121 (2015), 336-369. (2015) Zbl1321.35030MR3348928DOI10.1016/j.na.2014.11.007
  26. Roubíček, T., 10.1007/978-3-0348-0513-1, ISNM. International Series of Numerical Mathematics 153. Birkhäuser, Basel (2005). (2005) Zbl1087.35002MR2176645DOI10.1007/978-3-0348-0513-1
  27. Růžička, M., 10.1007/BFb0104029, Lecture Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
  28. Yu, C., Ri, D., 10.1016/j.na.2017.02.019, Nonlinear Anal., Theory Methods Appl., Ser. A 156 (2017), 144-166. (2017) Zbl1375.35127MR3634773DOI10.1016/j.na.2017.02.019
  29. Zeidler, E., 10.1007/978-1-4612-5020-3, Springer, New York (1985). (1985) Zbl0583.47051MR0768749DOI10.1007/978-1-4612-5020-3
  30. Zhang, A., 10.1016/j.jmaa.2007.04.007, J. Math. Anal. Appl. 337 (2008), 547-555. (2008) Zbl1216.35065MR2356093DOI10.1016/j.jmaa.2007.04.007
  31. Zhikov, V. V., 10.1070/IM1987v029n01ABEH000958, Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. (1987) Zbl0599.49031MR0864171DOI10.1070/IM1987v029n01ABEH000958
  32. Zhou, Q.-M., 10.1016/j.nonrwa.2014.07.003, Nonlinear Anal., Real World Appl. 21 (2015), 161-196. (2015) Zbl1304.35471MR3261587DOI10.1016/j.nonrwa.2014.07.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.