Existence of weak solutions for elliptic Dirichlet problems with variable exponent
Mathematica Bohemica (2023)
- Volume: 148, Issue: 3, page 283-302
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKim, Sungchol, and Ri, Dukman. "Existence of weak solutions for elliptic Dirichlet problems with variable exponent." Mathematica Bohemica 148.3 (2023): 283-302. <http://eudml.org/doc/299098>.
@article{Kim2023,
abstract = {This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type \[ \{\left\lbrace \begin\{array\}\{ll\} -\{\rm div\} a(x, u, \nabla u)+b(x, u, \nabla u)=0 &\text\{in\} \ \Omega ,\\ u=0 &\text\{on\} \ \partial \Omega , \end\{array\}\right.\} \]
where $\Omega $ is a bounded domain of $\mathbb \{R\}^n$, $n\ge 2$. In particular, we do not require strict monotonicity of the principal part $a(x,z,\cdot )$, while the approach is based on the variational method and results of the variable exponent function spaces.},
author = {Kim, Sungchol, Ri, Dukman},
journal = {Mathematica Bohemica},
keywords = {variable exponent; existence; variational methods; Dirichlet problem},
language = {eng},
number = {3},
pages = {283-302},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of weak solutions for elliptic Dirichlet problems with variable exponent},
url = {http://eudml.org/doc/299098},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Kim, Sungchol
AU - Ri, Dukman
TI - Existence of weak solutions for elliptic Dirichlet problems with variable exponent
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 3
SP - 283
EP - 302
AB - This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type \[ {\left\lbrace \begin{array}{ll} -{\rm div} a(x, u, \nabla u)+b(x, u, \nabla u)=0 &\text{in} \ \Omega ,\\ u=0 &\text{on} \ \partial \Omega , \end{array}\right.} \]
where $\Omega $ is a bounded domain of $\mathbb {R}^n$, $n\ge 2$. In particular, we do not require strict monotonicity of the principal part $a(x,z,\cdot )$, while the approach is based on the variational method and results of the variable exponent function spaces.
LA - eng
KW - variable exponent; existence; variational methods; Dirichlet problem
UR - http://eudml.org/doc/299098
ER -
References
top- Boccardo, L., Dacorogna, B., 10.1080/03605308408820358, Commun. Partial Differ. Equations 9 (1984), 1107-1117. (1984) Zbl0562.47041MR0759239DOI10.1080/03605308408820358
- Bogachev, V. I., 10.1007/978-3-540-34514-5, Springer, Berlin (2007). (2007) Zbl1120.28001MR2267655DOI10.1007/978-3-540-34514-5
- Bonanno, G., 10.1016/j.jmaa.2014.04.016, J. Math. Anal. Appl. 418 (2014), 812-827. (2014) Zbl1312.35111MR3206681DOI10.1016/j.jmaa.2014.04.016
- Chen, Y., Levine, S., Rao, M., 10.1137/050624522, SIAM J. Appl. Math. 66 (2006), 1383-1406. (2006) Zbl1102.49010MR2246061DOI10.1137/050624522
- Cruz-Uribe, D. V., Fiorenza, A., 10.1007/978-3-0348-0548-3, Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). (2013) Zbl1268.46002MR3026953DOI10.1007/978-3-0348-0548-3
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
- Fan, X., 10.1016/j.jmaa.2006.07.093, J. Math. Anal. Appl. 330 (2007), 665-682. (2007) Zbl1206.35103MR2302951DOI10.1016/j.jmaa.2006.07.093
- Fan, X., 10.1016/j.jmaa.2008.05.086, J. Math. Anal. Appl. 352 (2009), 85-98. (2009) Zbl1163.35026MR2499888DOI10.1016/j.jmaa.2008.05.086
- Fan, X., 10.1002/mana.200810203, Math. Nachr. 284 (2011), 1435-1445. (2011) Zbl1234.35111MR2832655DOI10.1002/mana.200810203
- Fan, X., Shen, J., Zhao, D., 10.1006/jmaa.2001.7618, J. Math. Anal. Appl. 262 (2001), 749-760. (2001) Zbl0995.46023MR1859337DOI10.1006/jmaa.2001.7618
- Fan, X., Zhang, Q., 10.1016/S0362-546X(02)00150-5, Nonlinear Anal., Theory Methods Appl., Ser. A 52 (2003), 1843-1852. (2003) Zbl1146.35353MR1954585DOI10.1016/S0362-546X(02)00150-5
- Fan, X., Zhang, Q., Zhao, D., 10.1016/j.jmaa.2003.11.020, J. Math. Anal. Appl. 302 (2005), 306-317. (2005) Zbl1072.35138MR2107835DOI10.1016/j.jmaa.2003.11.020
- Fu, Y., Yang, M., 10.1186/1029-242X-2014-23, J. Inequal. Appl. 2014 (2014), Article ID 23, 16 pages. (2014) Zbl1310.35112MR3213021DOI10.1186/1029-242X-2014-23
- Fu, Y., Yu, M., 10.1016/j.jmaa.2009.10.003, J. Math. Anal. Appl. 363 (2010), 679-689. (2010) Zbl1182.35115MR2564887DOI10.1016/j.jmaa.2009.10.003
- Galewski, M., 10.1016/j.jmaa.2006.03.006, J. Math. Anal. Appl. 326 (2007), 352-362. (2007) Zbl1159.35365MR2277787DOI10.1016/j.jmaa.2006.03.006
- Gossez, J.-P., Mustonen, V., Pseudo-monotonicity and the Leray-Lions condition, Differ. Integral Equ. 6 (1993), 37-45. (1993) Zbl0786.35055MR1190164
- Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M., 10.1016/j.na.2010.02.033, Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. (2010) Zbl1188.35072MR2639204DOI10.1016/j.na.2010.02.033
- Ji, C., 10.1016/j.na.2010.12.013, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2908-2915. (2011) Zbl1210.35132MR2785386DOI10.1016/j.na.2010.12.013
- Kim, S., Ri, D., 10.1016/j.na.2019.02.016, Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 170-192. (2019) Zbl1419.49045MR3926581DOI10.1016/j.na.2019.02.016
- Kováčik, O., Rákosník, J., 10.21136/CMJ.1991.102493, Czech. Math. J. 41 (1991), 592-618. (1991) Zbl0784.46029MR1134951DOI10.21136/CMJ.1991.102493
- Lions, J. L., Quelques méthodes de résolution des problémes aux limites nonlinéaires, Etudes mathematiques. Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Mashiyev, R. A., Cekic, B., Buhrii, O. M., 10.14232/ejqtde.2010.1.65, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 65, 13 pages. (2010) Zbl1207.35142MR2735026DOI10.14232/ejqtde.2010.1.65
- Mihăilescu, M., Repovš, D., 10.1016/j.na.2011.09.034, Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 975-981. (2012) Zbl1269.35009MR2847471DOI10.1016/j.na.2011.09.034
- Pucci, P., Zhang, Q., 10.1016/j.jde.2014.05.023, J. Differ. Equations 257 (2014), 1529-1566. (2014) Zbl1292.35135MR3217048DOI10.1016/j.jde.2014.05.023
- Rădulescu, V. D., 10.1016/j.na.2014.11.007, Nonlinear Anal., Theory Methods Appl., Ser. A 121 (2015), 336-369. (2015) Zbl1321.35030MR3348928DOI10.1016/j.na.2014.11.007
- Roubíček, T., 10.1007/978-3-0348-0513-1, ISNM. International Series of Numerical Mathematics 153. Birkhäuser, Basel (2005). (2005) Zbl1087.35002MR2176645DOI10.1007/978-3-0348-0513-1
- Růžička, M., 10.1007/BFb0104029, Lecture Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
- Yu, C., Ri, D., 10.1016/j.na.2017.02.019, Nonlinear Anal., Theory Methods Appl., Ser. A 156 (2017), 144-166. (2017) Zbl1375.35127MR3634773DOI10.1016/j.na.2017.02.019
- Zeidler, E., 10.1007/978-1-4612-5020-3, Springer, New York (1985). (1985) Zbl0583.47051MR0768749DOI10.1007/978-1-4612-5020-3
- Zhang, A., 10.1016/j.jmaa.2007.04.007, J. Math. Anal. Appl. 337 (2008), 547-555. (2008) Zbl1216.35065MR2356093DOI10.1016/j.jmaa.2007.04.007
- Zhikov, V. V., 10.1070/IM1987v029n01ABEH000958, Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. (1987) Zbl0599.49031MR0864171DOI10.1070/IM1987v029n01ABEH000958
- Zhou, Q.-M., 10.1016/j.nonrwa.2014.07.003, Nonlinear Anal., Real World Appl. 21 (2015), 161-196. (2015) Zbl1304.35471MR3261587DOI10.1016/j.nonrwa.2014.07.003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.