A new inclusion interval for the real eigenvalues of real matrices
Yinghua Wang; Xinnian Song; Lei Gao
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 979-992
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Yinghua, Song, Xinnian, and Gao, Lei. "A new inclusion interval for the real eigenvalues of real matrices." Czechoslovak Mathematical Journal 73.3 (2023): 979-992. <http://eudml.org/doc/299100>.
@article{Wang2023,
abstract = {By properties of Cvetković-Kostić-Varga-type (or, for short, CKV-type) B-matrices, a new class of nonsingular matrices called CKV-type $\overline\{\text\{B\}\}$-matrices is given, and a new inclusion interval of the real eigenvalues of real matrices is presented. It is shown that the new inclusion interval is sharper than those provided by J. M. Peña (2003), and by H. B. Li et al. (2007). We also propose a direct algorithm for computing the new inclusion interval. Numerical examples are included to illustrate the effectiveness of the obtained results.},
author = {Wang, Yinghua, Song, Xinnian, Gao, Lei},
journal = {Czechoslovak Mathematical Journal},
keywords = {CKV-type B-matrix; P-matrix; real eigenvalues localization},
language = {eng},
number = {3},
pages = {979-992},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new inclusion interval for the real eigenvalues of real matrices},
url = {http://eudml.org/doc/299100},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Wang, Yinghua
AU - Song, Xinnian
AU - Gao, Lei
TI - A new inclusion interval for the real eigenvalues of real matrices
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 979
EP - 992
AB - By properties of Cvetković-Kostić-Varga-type (or, for short, CKV-type) B-matrices, a new class of nonsingular matrices called CKV-type $\overline{\text{B}}$-matrices is given, and a new inclusion interval of the real eigenvalues of real matrices is presented. It is shown that the new inclusion interval is sharper than those provided by J. M. Peña (2003), and by H. B. Li et al. (2007). We also propose a direct algorithm for computing the new inclusion interval. Numerical examples are included to illustrate the effectiveness of the obtained results.
LA - eng
KW - CKV-type B-matrix; P-matrix; real eigenvalues localization
UR - http://eudml.org/doc/299100
ER -
References
top- Brauer, A., 10.1215/S0012-7094-47-01403-8, Duke Math. J. 14 (1947), 21-26. (1947) Zbl0029.33701MR0020540DOI10.1215/S0012-7094-47-01403-8
- Cvetkovic, L., Kostic, V., Varga, R. S., A new Geršgorin-type eigenvalue inclusion set, ETNA, Electron. Trans. Numer. Anal. 18 (2004), 73-80. (2004) Zbl1069.15016MR2114449
- Chen, X., Xiang, S., 10.1007/s10107-005-0645-9, Math. Program. 106 (2006), 513-525. (2006) Zbl1134.90043MR2216793DOI10.1007/s10107-005-0645-9
- Wang, Y., Song, X., Gao, L., CKV-type-B-code, Available at https://github.com/gaolei11712/CKV-type-B-code.git.
- Cvetković, D. L., Cvetković, L., Li, C., 10.1016/j.laa.2020.08.028, Linear Algebra Appl. 608 (2021), 158-184. (2021) Zbl1458.15064MR4142201DOI10.1016/j.laa.2020.08.028
- Fallat, S. M., Johnson, C. R., 10.1016/S0024-3795(98)10194-5, Linear Algebra Appl. 288 (1999), 149-173. (1999) Zbl0973.15013MR1670523DOI10.1016/S0024-3795(98)10194-5
- Fiedler, M., Pták, V., 10.21136/CMJ.1962.100526, Czech. Math. J. 12 (1962), 382-400. (1962) Zbl0131.24806MR0142565DOI10.21136/CMJ.1962.100526
- Gershgorin, S., Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR, Otd. Mat. Estest. Nauk, VII. Ser. 6 (1931), 749-754 Russian. (1931) Zbl0003.00102
- Li, H.-B., Huang, T.-Z., Li, H., 10.1002/nla.524, Numer. Linear Algebra Appl. 14 (2007), 391-405. (2007) Zbl1199.15072MR2312426DOI10.1002/nla.524
- Li, C., Li, Y., 10.1016/j.laa.2014.10.027, Linear Algebra Appl. 466 (2015), 343-356. (2015) Zbl1303.15034MR3278256DOI10.1016/j.laa.2014.10.027
- Li, C., Liu, Q., Li, Y., 10.1080/03081087.2014.986044, Linear Multilinear Algebra 63 (2015), 2159-2170. (2015) Zbl1335.15023MR3401934DOI10.1080/03081087.2014.986044
- Li, C., Wang, F., Zhao, J., Zhu, Y., Li, Y., 10.1016/j.cam.2013.04.022, J. Comput. Appl. Math. 255 (2014), 1-14. (2014) Zbl1291.15065MR3093400DOI10.1016/j.cam.2013.04.022
- Liu, J., Zhang, J., Liu, Y., 10.1016/j.laa.2012.02.001, Linear Algebra Appl. 437 (2012), 168-183. (2012) Zbl1248.15018MR2917437DOI10.1016/j.laa.2012.02.001
- Peña, J. M., 10.1137/S0895479800370342, SIAM J. Matrix Anal. Appl. 22 (2001), 1027-1037. (2001) Zbl0986.15015MR1824055DOI10.1137/S0895479800370342
- Peña, J. M., 10.1007/s00211-002-0427-8, Numer. Math. 95 (2003), 337-345. (2003) Zbl1032.15014MR2001081DOI10.1007/s00211-002-0427-8
- Peña, J. M., 10.1137/04061074X, SIAM J. Matrix Anal. Appl. 26 (2005), 908-917. (2005) Zbl1082.15031MR2178204DOI10.1137/04061074X
- Shen, S.-Q., Huang, T.-Z., Jing, Y.-F., 10.1137/080717961, SIAM J. Matrix Anal. Appl. 31 (2009), 816-830. (2009) Zbl1195.15023MR2530278DOI10.1137/080717961
- Song, X., Gao, L., 10.3934/math.2021630, AIMS Math. 6 (2021), 10846-10860. (2021) Zbl07536366MR4294618DOI10.3934/math.2021630
- Varga, R. S., Geršgorin-type eigenvalue inclusion theorems and their sharpness, ETNA, Electron. Trans. Numer. Anal. 12 (2001), 113-133. (2001) Zbl0979.15015MR1832018
- Varga, R. S., 10.1007/978-3-642-17798-9, Springer Series in Computational Mathematics 36. Springer, Berlin (2004). (2004) Zbl1057.15023MR2093409DOI10.1007/978-3-642-17798-9
- Zhao, J., Liu, Q., Li, C., Li, Y., 10.1016/j.laa.2018.04.028, Linear Algebra Appl. 552 (2018), 277-287. (2018) Zbl1391.15043MR3804489DOI10.1016/j.laa.2018.04.028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.