On the zeros of a quaternionic polynomial: An extension of the Eneström-Kakeya theorem
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 649-662
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMir, Abdullah. "On the zeros of a quaternionic polynomial: An extension of the Eneström-Kakeya theorem." Czechoslovak Mathematical Journal 73.3 (2023): 649-662. <http://eudml.org/doc/299108>.
@article{Mir2023,
abstract = {We present some results on the location of zeros of regular polynomials of a quaternionic variable. We derive new bounds of Eneström-Kakeya type for the zeros of these polynomials by virtue of a maximum modulus theorem and the structure of the zero sets of a regular product established in the newly developed theory of regular functions and polynomials of a quaternionic variable. Our results extend some classical results from complex to the quaternionic setting as well.},
author = {Mir, Abdullah},
journal = {Czechoslovak Mathematical Journal},
keywords = {quaternionic polynomial; Eneström-Kakeya theorem; zero-sets of a regular product},
language = {eng},
number = {3},
pages = {649-662},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the zeros of a quaternionic polynomial: An extension of the Eneström-Kakeya theorem},
url = {http://eudml.org/doc/299108},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Mir, Abdullah
TI - On the zeros of a quaternionic polynomial: An extension of the Eneström-Kakeya theorem
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 649
EP - 662
AB - We present some results on the location of zeros of regular polynomials of a quaternionic variable. We derive new bounds of Eneström-Kakeya type for the zeros of these polynomials by virtue of a maximum modulus theorem and the structure of the zero sets of a regular product established in the newly developed theory of regular functions and polynomials of a quaternionic variable. Our results extend some classical results from complex to the quaternionic setting as well.
LA - eng
KW - quaternionic polynomial; Eneström-Kakeya theorem; zero-sets of a regular product
UR - http://eudml.org/doc/299108
ER -
References
top- Carney, N., Gardner, R., Keaton, R., Powers, A., 10.1016/j.jat.2019.105325, J. Approx. Theory 250 (2020), Article ID 105325, 10 pages. (2020) Zbl1441.30070MR4035962DOI10.1016/j.jat.2019.105325
- Coroianu, L., Gal, S. G., 10.1007/s13398-021-01126-z, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115 (2021), Article ID 187, 20 pages. (2021) Zbl1476.30158MR4311697DOI10.1007/s13398-021-01126-z
- Cullen, C. G., 10.1215/S0012-7094-65-03212-6, Duke Math. J. 32 (1965), 139-148. (1965) Zbl0173.09001MR0173012DOI10.1215/S0012-7094-65-03212-6
- Gal, S. G., Sabadini, I., 10.1016/j.crma.2014.10.011, C. R., Math., Acad. Sci. Paris 353 (2015), 5-9. (2015) Zbl1306.30020MR3285138DOI10.1016/j.crma.2014.10.011
- Gentili, G., Stoppato, C., 10.1307/mmj/1231770366, Mich. Math. J. 56 (2008), 655-667. (2008) Zbl1184.30048MR2490652DOI10.1307/mmj/1231770366
- Gentili, G., Struppa, D. C., 10.1016/j.aim.2007.05.010, Adv. Math. 216 (2007), 279-301. (2007) Zbl1124.30015MR2353257DOI10.1016/j.aim.2007.05.010
- Gentili, G., Struppa, D. C., 10.1007/s00032-008-0093-0, Milan J. Math. 76 (2008), 15-25. (2008) Zbl1194.30054MR2465984DOI10.1007/s00032-008-0093-0
- Gentili, G., Struppa, D. C., Vlacci, F., 10.1007/s00209-007-0254-9, Math. Z. 259 (2008), 895-902. (2008) Zbl1144.30004MR2403747DOI10.1007/s00209-007-0254-9
- Govil, N. K., Rahman, Q. I., 10.2748/tmj/1178243172, Tohoku Math. J., II. Ser. 20 (1968), 126-136. (1968) Zbl0194.10201MR0231979DOI10.2748/tmj/1178243172
- Joyal, A., Labelle, G., Rahman, Q. I., 10.4153/CMB-1967-006-3, Can. Math. Bull. 10 (1967), 53-63. (1967) Zbl0152.06102MR0213513DOI10.4153/CMB-1967-006-3
- Lam, T. Y., 10.1007/978-1-4684-0406-7, Graduate Texts in Mathematics 131. Springer, New York (1991). (1991) Zbl0728.16001MR1125071DOI10.1007/978-1-4684-0406-7
- Marden, M., Geometry of Polynomials, Mathematical Surveys 3. AMS, Providence (1966). (1966) Zbl0162.37101MR0225972
- Milovanović, G. V., Mitrinović, D. S., Rassias, T. M., 10.1142/1284, World Scientific, Singapore (1994). (1994) Zbl0848.26001MR1298187DOI10.1142/1284
- Niven, I., 10.1080/00029890.1941.11991158, Am. Math. Mon. 48 (1941), 654-661. (1941) Zbl0060.08002MR0006159DOI10.1080/00029890.1941.11991158
- Niven, I., 10.1080/00029890.1942.11991248, Am. Math. Mon. 49 (1942), 386-388. (1942) Zbl0061.01407MR0006980DOI10.1080/00029890.1942.11991248
- Serôdio, R., Siu, L.-S., 10.1016/S0893-9659(00)00142-7, Appl. Math. Lett. 14 (2001), 237-239. (2001) Zbl0979.30030MR1808271DOI10.1016/S0893-9659(00)00142-7
- Sudbery, A., 10.1017/S0305004100055638, Math. Proc. Camb. Philos. Soc. 85 (1979), 199-225. (1979) Zbl0399.30038MR0516081DOI10.1017/S0305004100055638
- Tripathi, D., 10.1007/s40065-020-00283-0, Arab. J. Math. 9 (2020), 707-714. (2020) Zbl1452.30027MR4159749DOI10.1007/s40065-020-00283-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.