On the zeros of a quaternionic polynomial: An extension of the Eneström-Kakeya theorem

Abdullah Mir

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 649-662
  • ISSN: 0011-4642

Abstract

top
We present some results on the location of zeros of regular polynomials of a quaternionic variable. We derive new bounds of Eneström-Kakeya type for the zeros of these polynomials by virtue of a maximum modulus theorem and the structure of the zero sets of a regular product established in the newly developed theory of regular functions and polynomials of a quaternionic variable. Our results extend some classical results from complex to the quaternionic setting as well.

How to cite

top

Mir, Abdullah. "On the zeros of a quaternionic polynomial: An extension of the Eneström-Kakeya theorem." Czechoslovak Mathematical Journal 73.3 (2023): 649-662. <http://eudml.org/doc/299108>.

@article{Mir2023,
abstract = {We present some results on the location of zeros of regular polynomials of a quaternionic variable. We derive new bounds of Eneström-Kakeya type for the zeros of these polynomials by virtue of a maximum modulus theorem and the structure of the zero sets of a regular product established in the newly developed theory of regular functions and polynomials of a quaternionic variable. Our results extend some classical results from complex to the quaternionic setting as well.},
author = {Mir, Abdullah},
journal = {Czechoslovak Mathematical Journal},
keywords = {quaternionic polynomial; Eneström-Kakeya theorem; zero-sets of a regular product},
language = {eng},
number = {3},
pages = {649-662},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the zeros of a quaternionic polynomial: An extension of the Eneström-Kakeya theorem},
url = {http://eudml.org/doc/299108},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Mir, Abdullah
TI - On the zeros of a quaternionic polynomial: An extension of the Eneström-Kakeya theorem
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 649
EP - 662
AB - We present some results on the location of zeros of regular polynomials of a quaternionic variable. We derive new bounds of Eneström-Kakeya type for the zeros of these polynomials by virtue of a maximum modulus theorem and the structure of the zero sets of a regular product established in the newly developed theory of regular functions and polynomials of a quaternionic variable. Our results extend some classical results from complex to the quaternionic setting as well.
LA - eng
KW - quaternionic polynomial; Eneström-Kakeya theorem; zero-sets of a regular product
UR - http://eudml.org/doc/299108
ER -

References

top
  1. Carney, N., Gardner, R., Keaton, R., Powers, A., 10.1016/j.jat.2019.105325, J. Approx. Theory 250 (2020), Article ID 105325, 10 pages. (2020) Zbl1441.30070MR4035962DOI10.1016/j.jat.2019.105325
  2. Coroianu, L., Gal, S. G., 10.1007/s13398-021-01126-z, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115 (2021), Article ID 187, 20 pages. (2021) Zbl1476.30158MR4311697DOI10.1007/s13398-021-01126-z
  3. Cullen, C. G., 10.1215/S0012-7094-65-03212-6, Duke Math. J. 32 (1965), 139-148. (1965) Zbl0173.09001MR0173012DOI10.1215/S0012-7094-65-03212-6
  4. Gal, S. G., Sabadini, I., 10.1016/j.crma.2014.10.011, C. R., Math., Acad. Sci. Paris 353 (2015), 5-9. (2015) Zbl1306.30020MR3285138DOI10.1016/j.crma.2014.10.011
  5. Gentili, G., Stoppato, C., 10.1307/mmj/1231770366, Mich. Math. J. 56 (2008), 655-667. (2008) Zbl1184.30048MR2490652DOI10.1307/mmj/1231770366
  6. Gentili, G., Struppa, D. C., 10.1016/j.aim.2007.05.010, Adv. Math. 216 (2007), 279-301. (2007) Zbl1124.30015MR2353257DOI10.1016/j.aim.2007.05.010
  7. Gentili, G., Struppa, D. C., 10.1007/s00032-008-0093-0, Milan J. Math. 76 (2008), 15-25. (2008) Zbl1194.30054MR2465984DOI10.1007/s00032-008-0093-0
  8. Gentili, G., Struppa, D. C., Vlacci, F., 10.1007/s00209-007-0254-9, Math. Z. 259 (2008), 895-902. (2008) Zbl1144.30004MR2403747DOI10.1007/s00209-007-0254-9
  9. Govil, N. K., Rahman, Q. I., 10.2748/tmj/1178243172, Tohoku Math. J., II. Ser. 20 (1968), 126-136. (1968) Zbl0194.10201MR0231979DOI10.2748/tmj/1178243172
  10. Joyal, A., Labelle, G., Rahman, Q. I., 10.4153/CMB-1967-006-3, Can. Math. Bull. 10 (1967), 53-63. (1967) Zbl0152.06102MR0213513DOI10.4153/CMB-1967-006-3
  11. Lam, T. Y., 10.1007/978-1-4684-0406-7, Graduate Texts in Mathematics 131. Springer, New York (1991). (1991) Zbl0728.16001MR1125071DOI10.1007/978-1-4684-0406-7
  12. Marden, M., Geometry of Polynomials, Mathematical Surveys 3. AMS, Providence (1966). (1966) Zbl0162.37101MR0225972
  13. Milovanović, G. V., Mitrinović, D. S., Rassias, T. M., 10.1142/1284, World Scientific, Singapore (1994). (1994) Zbl0848.26001MR1298187DOI10.1142/1284
  14. Niven, I., 10.1080/00029890.1941.11991158, Am. Math. Mon. 48 (1941), 654-661. (1941) Zbl0060.08002MR0006159DOI10.1080/00029890.1941.11991158
  15. Niven, I., 10.1080/00029890.1942.11991248, Am. Math. Mon. 49 (1942), 386-388. (1942) Zbl0061.01407MR0006980DOI10.1080/00029890.1942.11991248
  16. Serôdio, R., Siu, L.-S., 10.1016/S0893-9659(00)00142-7, Appl. Math. Lett. 14 (2001), 237-239. (2001) Zbl0979.30030MR1808271DOI10.1016/S0893-9659(00)00142-7
  17. Sudbery, A., 10.1017/S0305004100055638, Math. Proc. Camb. Philos. Soc. 85 (1979), 199-225. (1979) Zbl0399.30038MR0516081DOI10.1017/S0305004100055638
  18. Tripathi, D., 10.1007/s40065-020-00283-0, Arab. J. Math. 9 (2020), 707-714. (2020) Zbl1452.30027MR4159749DOI10.1007/s40065-020-00283-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.