Majority choosability of 1-planar digraph

Weihao Xia; Jihui Wang; Jiansheng Cai

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 663-673
  • ISSN: 0011-4642

Abstract

top
A majority coloring of a digraph with colors is an assignment such that for every we have for at most half of all out-neighbors . A digraph is majority -choosable if for any assignment of lists of colors of size to the vertices, there is a majority coloring of from these lists. We prove that if is a 1-planar graph without a 4-cycle, then is majority 3-choosable. And we also prove that every NIC-planar digraph is majority 3-choosable.

How to cite

top

Xia, Weihao, Wang, Jihui, and Cai, Jiansheng. "Majority choosability of 1-planar digraph." Czechoslovak Mathematical Journal 73.3 (2023): 663-673. <http://eudml.org/doc/299122>.

@article{Xia2023,
abstract = {A majority coloring of a digraph $D$ with $k$ colors is an assignment $\pi \colon V(D) \rightarrow \lbrace 1,2,\cdots ,k\rbrace $ such that for every $v\in V(D)$ we have $\pi (w)=\pi (v)$ for at most half of all out-neighbors $w\in N^+(v)$. A digraph $D$ is majority $k$-choosable if for any assignment of lists of colors of size $k$ to the vertices, there is a majority coloring of $D$ from these lists. We prove that if $U(D)$ is a 1-planar graph without a 4-cycle, then $D$ is majority 3-choosable. And we also prove that every NIC-planar digraph is majority 3-choosable.},
author = {Xia, Weihao, Wang, Jihui, Cai, Jiansheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {majority choosable; OD-3-choosable; 1-planar digraph},
language = {eng},
number = {3},
pages = {663-673},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Majority choosability of 1-planar digraph},
url = {http://eudml.org/doc/299122},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Xia, Weihao
AU - Wang, Jihui
AU - Cai, Jiansheng
TI - Majority choosability of 1-planar digraph
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 663
EP - 673
AB - A majority coloring of a digraph $D$ with $k$ colors is an assignment $\pi \colon V(D) \rightarrow \lbrace 1,2,\cdots ,k\rbrace $ such that for every $v\in V(D)$ we have $\pi (w)=\pi (v)$ for at most half of all out-neighbors $w\in N^+(v)$. A digraph $D$ is majority $k$-choosable if for any assignment of lists of colors of size $k$ to the vertices, there is a majority coloring of $D$ from these lists. We prove that if $U(D)$ is a 1-planar graph without a 4-cycle, then $D$ is majority 3-choosable. And we also prove that every NIC-planar digraph is majority 3-choosable.
LA - eng
KW - majority choosable; OD-3-choosable; 1-planar digraph
UR - http://eudml.org/doc/299122
ER -

References

top
  1. Anastos, M., Lamaison, A., Steiner, R., Szabó, T., 10.37236/10067, Electron. J. Comb. 28 (2021), Article ID P2.31, 17 pages. (2021) Zbl1465.05057MR4272720DOI10.37236/10067
  2. Anholcer, M., Bosek, B., Grytczuk, J., 10.37236/6923, Electron. J. Comb. 24 (2017), Article ID P3.57, 5 pages. (2017) Zbl1375.05079MR3711099DOI10.37236/6923
  3. Borodin, O. V., 10.1002/jgt.3190190406, J. Graph Theory 19 (1995), 507-521. (1995) Zbl0826.05027MR1333779DOI10.1002/jgt.3190190406
  4. Czap, J., Šugerek, P., 10.2298/FIL1702363C, Filomat 31 (2017), 363-370. (2017) Zbl1488.05133MR3628845DOI10.2298/FIL1702363C
  5. Fabrici, I., Madaras, T., 10.1016/j.disc.2005.11.056, Discrete Math. 307 (2007), 854-865. (2007) Zbl1111.05026MR2297168DOI10.1016/j.disc.2005.11.056
  6. Gir{ã}o, A., Kittipassorn, T., Popielarz, K., 10.1017/S096354831700044X, Comb. Probab. Comput. 26 (2017), 850-855. (2017) Zbl1373.05066MR3714995DOI10.1017/S096354831700044X
  7. Knox, F., Šámal, R., 10.37236/6762, Electron. J. Comb. 25 (2018), Article ID P3.29, 4 pages. (2018) Zbl1395.05070MR3853881DOI10.37236/6762
  8. Kreutzer, S., Oum, S., Seymour, P., Zypen, D. van der, Wood, D. R., 10.37236/6410, Electron. J. Comb. 24 (2017), Article ID P2.25, 9 pages. (2017) Zbl1364.05029MR3665558DOI10.37236/6410
  9. Wang, W., Lih, K.-W., 10.1002/jgt.20292, J. Graph Theory 58 (2008), 27-44. (2008) Zbl1155.05016MR2404039DOI10.1002/jgt.20292
  10. Yang, W., Wang, W., Wang, Y., 10.1016/j.dam.2020.01.010, Discrete Appl. Math. 283 (2020), 275-291. (2020) Zbl1442.05072MR4114897DOI10.1016/j.dam.2020.01.010

NotesEmbed ?

top

You must be logged in to post comments.