Ding projective and Ding injective modules over trivial ring extensions
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 903-919
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMao, Lixin. "Ding projective and Ding injective modules over trivial ring extensions." Czechoslovak Mathematical Journal 73.3 (2023): 903-919. <http://eudml.org/doc/299126>.
@article{Mao2023,
abstract = {Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$ such that $M_\{R\}$, $_\{R\}M$, $(R,0)_\{R\ltimes M\}$ and $_\{R\ltimes M\}(R,0)$ have finite flat dimensions. We prove that $(X,\alpha )$ is a Ding projective left $R\ltimes M$-module if and only if the sequence $M\otimes _R M\otimes _R X\stackrel\{M\otimes \alpha \}\{\longrightarrow \}M\otimes _R X\stackrel\{\alpha \}\{\rightarrow \}X$ is exact and $\{\rm coker\}(\alpha )$ is a Ding projective left $R$-module. Analogously, we explicitly describe Ding injective $R\ltimes M$-modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.},
author = {Mao, Lixin},
journal = {Czechoslovak Mathematical Journal},
keywords = {trivial extension; Ding projective module; Ding injective module},
language = {eng},
number = {3},
pages = {903-919},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ding projective and Ding injective modules over trivial ring extensions},
url = {http://eudml.org/doc/299126},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Mao, Lixin
TI - Ding projective and Ding injective modules over trivial ring extensions
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 903
EP - 919
AB - Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$ such that $M_{R}$, $_{R}M$, $(R,0)_{R\ltimes M}$ and $_{R\ltimes M}(R,0)$ have finite flat dimensions. We prove that $(X,\alpha )$ is a Ding projective left $R\ltimes M$-module if and only if the sequence $M\otimes _R M\otimes _R X\stackrel{M\otimes \alpha }{\longrightarrow }M\otimes _R X\stackrel{\alpha }{\rightarrow }X$ is exact and ${\rm coker}(\alpha )$ is a Ding projective left $R$-module. Analogously, we explicitly describe Ding injective $R\ltimes M$-modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.
LA - eng
KW - trivial extension; Ding projective module; Ding injective module
UR - http://eudml.org/doc/299126
ER -
References
top- Auslander, M., Bridger, M., 10.1090/memo/0094, Memoirs of the American Mathematical Society 94. AMS, Providence (1969). (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
- Ding, N., Li, Y., Mao, L., 10.1017/S1446788708000761, J. Aust. Math. Soc. 86 (2009), 323-338. (2009) Zbl1200.16010MR2529328DOI10.1017/S1446788708000761
- Enochs, E. E., Cortés-Izurdiaga, M., Torrecillas, B., 10.1016/j.jpaa.2013.12.006, J. Pure Appl. Algebra 218 (2014), 1544-1554. (2014) Zbl1312.16023MR3175039DOI10.1016/j.jpaa.2013.12.006
- Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
- Fieldhouse, D. J., 10.1017/S0017089500001567, Glasg. Math. J. 13 (1972), 144-146. (1972) Zbl0258.16028MR313319DOI10.1017/S0017089500001567
- Fossum, R. M., Griffith, P. A., Reiten, I., 10.1007/BFb0065404, Lecture Notes in Mathematics 456. Springer, Berlin (1975). (1975) Zbl0303.18006MR0389981DOI10.1007/BFb0065404
- Gillespie, J., 10.4310/HHA.2010.v12.n1.a6, Homology Homotopy Appl. 12 (2010), 61-73. (2010) Zbl1231.16005MR2607410DOI10.4310/HHA.2010.v12.n1.a6
- Green, E. L., 10.2140/pjm.1982.100.123, Pac. J. Math. 100 (1982), 123-138. (1982) Zbl0502.16016MR661444DOI10.2140/pjm.1982.100.123
- Haghany, A., Mazrooei, M., Vedadi, M. R., 10.1142/S0219498812501071, J. Algebra Appl. 11 (2012), Article ID 1250107, 13 pages. (2012) Zbl1280.16002MR2997449DOI10.1142/S0219498812501071
- Holm, H., Jørgensen, P., 10.1016/j.jpaa.2005.07.010, J. Pure Appl. Algebra 205 (2006), 423-445. (2006) Zbl1094.13021MR2203625DOI10.1016/j.jpaa.2005.07.010
- Krylov, P., Tuganbaev, A., 10.1007/978-3-319-53907-2, Algebra and Applications 23. Springer, Cham (2017). (2017) Zbl1367.16001MR3642603DOI10.1007/978-3-319-53907-2
- Lam, T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics 189. Springer, New York (1999). (1999) Zbl0911.16001MR1653294DOI10.1007/978-1-4612-0525-8
- Löfwall, C., 10.1016/0021-8693(76)90078-8, J. Algebra 39 (1976), 287-307. (1976) Zbl0325.16022MR0409608DOI10.1016/0021-8693(76)90078-8
- Mahdou, N., Ouarghi, K., 10.1515/9783110213188.291, Commutative Algebra and its Applications Walter de Gruyter, Berlin (2009), 291-299. (2009) Zbl1177.13033MR2606294DOI10.1515/9783110213188.291
- Mao, L., 10.4171/RSMUP/100, Rend. Semin. Mat. Univ. Padova 148 (2022), 1-22. (2022) MR4542370DOI10.4171/RSMUP/100
- Mao, L., 10.1142/S0219498823502651, (to appear) in J. Algebra Appl. DOI10.1142/S0219498823502651
- Mao, L., Ding, N., 10.1142/S0219498808002953, J. Algebra Appl. 7 (2008), 491-506. (2008) Zbl1165.16004MR2442073DOI10.1142/S0219498808002953
- Morita, K., Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Diagaku, Sect. A 6 (1958), 83-142. (1958) Zbl0080.25702MR0096700
- Nagata, M., Local Rings, Interscience Tracts in Pure and Applied Mathematics 13. Interscience, New York (1962). (1962) Zbl0123.03402MR0155856
- Palmér, I., Roos, J.-E., 10.1016/0021-8693(73)90113-0, J. Algebra 27 (1973), 380-413. (1973) Zbl0269.16019MR0376766DOI10.1016/0021-8693(73)90113-0
- Reiten, I., Trivial Extensions and Gorenstein Rings: Thesis, University of Illinois, Urbana (1971). (1971) MR2621542
- Rotman, J. J., An Introduction to Homological Algebra, Pure and Applied Mathematics 85. Academic Press, New York (1979). (1979) Zbl0441.18018MR538169
- Stenström, B., 10.1112/jlms/s2-2.2.323, J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. (1970) Zbl0194.06602MR258888DOI10.1112/jlms/s2-2.2.323
- Yang, G., 10.4134/JKMS.2012.49.1.031, J. Korean Math. Soc. 49 (2012), 31-47. (2012) Zbl1247.16006MR2907540DOI10.4134/JKMS.2012.49.1.031
- Yang, G., Liu, Z., Liang, L., 10.1142/S1005386713000576, Algebra Colloq. 20 (2013), 601-612. (2013) Zbl1280.16003MR3116789DOI10.1142/S1005386713000576
- Zhang, P., 10.1016/j.jalgebra.2013.05.008, J. Algebra 388 (2013), 65-80. (2013) Zbl1351.16012MR3061678DOI10.1016/j.jalgebra.2013.05.008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.