Ding projective and Ding injective modules over trivial ring extensions

Lixin Mao

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 903-919
  • ISSN: 0011-4642

Abstract

top
Let R M be a trivial extension of a ring R by an R - R -bimodule M such that M R , R M , ( R , 0 ) R M and R M ( R , 0 ) have finite flat dimensions. We prove that ( X , α ) is a Ding projective left R M -module if and only if the sequence M R M R X M α M R X α X is exact and coker ( α ) is a Ding projective left R -module. Analogously, we explicitly describe Ding injective R M -modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.

How to cite

top

Mao, Lixin. "Ding projective and Ding injective modules over trivial ring extensions." Czechoslovak Mathematical Journal 73.3 (2023): 903-919. <http://eudml.org/doc/299126>.

@article{Mao2023,
abstract = {Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$ such that $M_\{R\}$, $_\{R\}M$, $(R,0)_\{R\ltimes M\}$ and $_\{R\ltimes M\}(R,0)$ have finite flat dimensions. We prove that $(X,\alpha )$ is a Ding projective left $R\ltimes M$-module if and only if the sequence $M\otimes _R M\otimes _R X\stackrel\{M\otimes \alpha \}\{\longrightarrow \}M\otimes _R X\stackrel\{\alpha \}\{\rightarrow \}X$ is exact and $\{\rm coker\}(\alpha )$ is a Ding projective left $R$-module. Analogously, we explicitly describe Ding injective $R\ltimes M$-modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.},
author = {Mao, Lixin},
journal = {Czechoslovak Mathematical Journal},
keywords = {trivial extension; Ding projective module; Ding injective module},
language = {eng},
number = {3},
pages = {903-919},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ding projective and Ding injective modules over trivial ring extensions},
url = {http://eudml.org/doc/299126},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Mao, Lixin
TI - Ding projective and Ding injective modules over trivial ring extensions
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 903
EP - 919
AB - Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$ such that $M_{R}$, $_{R}M$, $(R,0)_{R\ltimes M}$ and $_{R\ltimes M}(R,0)$ have finite flat dimensions. We prove that $(X,\alpha )$ is a Ding projective left $R\ltimes M$-module if and only if the sequence $M\otimes _R M\otimes _R X\stackrel{M\otimes \alpha }{\longrightarrow }M\otimes _R X\stackrel{\alpha }{\rightarrow }X$ is exact and ${\rm coker}(\alpha )$ is a Ding projective left $R$-module. Analogously, we explicitly describe Ding injective $R\ltimes M$-modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.
LA - eng
KW - trivial extension; Ding projective module; Ding injective module
UR - http://eudml.org/doc/299126
ER -

References

top
  1. Auslander, M., Bridger, M., 10.1090/memo/0094, Memoirs of the American Mathematical Society 94. AMS, Providence (1969). (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
  2. Ding, N., Li, Y., Mao, L., 10.1017/S1446788708000761, J. Aust. Math. Soc. 86 (2009), 323-338. (2009) Zbl1200.16010MR2529328DOI10.1017/S1446788708000761
  3. Enochs, E. E., Cortés-Izurdiaga, M., Torrecillas, B., 10.1016/j.jpaa.2013.12.006, J. Pure Appl. Algebra 218 (2014), 1544-1554. (2014) Zbl1312.16023MR3175039DOI10.1016/j.jpaa.2013.12.006
  4. Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
  5. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
  6. Fieldhouse, D. J., 10.1017/S0017089500001567, Glasg. Math. J. 13 (1972), 144-146. (1972) Zbl0258.16028MR313319DOI10.1017/S0017089500001567
  7. Fossum, R. M., Griffith, P. A., Reiten, I., 10.1007/BFb0065404, Lecture Notes in Mathematics 456. Springer, Berlin (1975). (1975) Zbl0303.18006MR0389981DOI10.1007/BFb0065404
  8. Gillespie, J., 10.4310/HHA.2010.v12.n1.a6, Homology Homotopy Appl. 12 (2010), 61-73. (2010) Zbl1231.16005MR2607410DOI10.4310/HHA.2010.v12.n1.a6
  9. Green, E. L., 10.2140/pjm.1982.100.123, Pac. J. Math. 100 (1982), 123-138. (1982) Zbl0502.16016MR661444DOI10.2140/pjm.1982.100.123
  10. Haghany, A., Mazrooei, M., Vedadi, M. R., 10.1142/S0219498812501071, J. Algebra Appl. 11 (2012), Article ID 1250107, 13 pages. (2012) Zbl1280.16002MR2997449DOI10.1142/S0219498812501071
  11. Holm, H., Jørgensen, P., 10.1016/j.jpaa.2005.07.010, J. Pure Appl. Algebra 205 (2006), 423-445. (2006) Zbl1094.13021MR2203625DOI10.1016/j.jpaa.2005.07.010
  12. Krylov, P., Tuganbaev, A., 10.1007/978-3-319-53907-2, Algebra and Applications 23. Springer, Cham (2017). (2017) Zbl1367.16001MR3642603DOI10.1007/978-3-319-53907-2
  13. Lam, T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics 189. Springer, New York (1999). (1999) Zbl0911.16001MR1653294DOI10.1007/978-1-4612-0525-8
  14. Löfwall, C., 10.1016/0021-8693(76)90078-8, J. Algebra 39 (1976), 287-307. (1976) Zbl0325.16022MR0409608DOI10.1016/0021-8693(76)90078-8
  15. Mahdou, N., Ouarghi, K., 10.1515/9783110213188.291, Commutative Algebra and its Applications Walter de Gruyter, Berlin (2009), 291-299. (2009) Zbl1177.13033MR2606294DOI10.1515/9783110213188.291
  16. Mao, L., 10.4171/RSMUP/100, Rend. Semin. Mat. Univ. Padova 148 (2022), 1-22. (2022) MR4542370DOI10.4171/RSMUP/100
  17. Mao, L., 10.1142/S0219498823502651, (to appear) in J. Algebra Appl. DOI10.1142/S0219498823502651
  18. Mao, L., Ding, N., 10.1142/S0219498808002953, J. Algebra Appl. 7 (2008), 491-506. (2008) Zbl1165.16004MR2442073DOI10.1142/S0219498808002953
  19. Morita, K., Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Diagaku, Sect. A 6 (1958), 83-142. (1958) Zbl0080.25702MR0096700
  20. Nagata, M., Local Rings, Interscience Tracts in Pure and Applied Mathematics 13. Interscience, New York (1962). (1962) Zbl0123.03402MR0155856
  21. Palmér, I., Roos, J.-E., 10.1016/0021-8693(73)90113-0, J. Algebra 27 (1973), 380-413. (1973) Zbl0269.16019MR0376766DOI10.1016/0021-8693(73)90113-0
  22. Reiten, I., Trivial Extensions and Gorenstein Rings: Thesis, University of Illinois, Urbana (1971). (1971) MR2621542
  23. Rotman, J. J., An Introduction to Homological Algebra, Pure and Applied Mathematics 85. Academic Press, New York (1979). (1979) Zbl0441.18018MR538169
  24. Stenström, B., 10.1112/jlms/s2-2.2.323, J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. (1970) Zbl0194.06602MR258888DOI10.1112/jlms/s2-2.2.323
  25. Yang, G., 10.4134/JKMS.2012.49.1.031, J. Korean Math. Soc. 49 (2012), 31-47. (2012) Zbl1247.16006MR2907540DOI10.4134/JKMS.2012.49.1.031
  26. Yang, G., Liu, Z., Liang, L., 10.1142/S1005386713000576, Algebra Colloq. 20 (2013), 601-612. (2013) Zbl1280.16003MR3116789DOI10.1142/S1005386713000576
  27. Zhang, P., 10.1016/j.jalgebra.2013.05.008, J. Algebra 388 (2013), 65-80. (2013) Zbl1351.16012MR3061678DOI10.1016/j.jalgebra.2013.05.008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.