Equivariant one-parameter deformations of associative algebra morphisms

Raj Bhawan Yadav

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 675-694
  • ISSN: 0011-4642

Abstract

top
We introduce equivariant formal deformation theory of associative algebra morphisms. We also present an equivariant deformation cohomology of associative algebra morphisms and using this we study the equivariant formal deformation theory of associative algebra morphisms. We discuss some examples of equivariant deformations and use the Maurer-Cartan equation to characterize equivariant deformations.

How to cite

top

Yadav, Raj Bhawan. "Equivariant one-parameter deformations of associative algebra morphisms." Czechoslovak Mathematical Journal 73.3 (2023): 675-694. <http://eudml.org/doc/299127>.

@article{Yadav2023,
abstract = {We introduce equivariant formal deformation theory of associative algebra morphisms. We also present an equivariant deformation cohomology of associative algebra morphisms and using this we study the equivariant formal deformation theory of associative algebra morphisms. We discuss some examples of equivariant deformations and use the Maurer-Cartan equation to characterize equivariant deformations.},
author = {Yadav, Raj Bhawan},
journal = {Czechoslovak Mathematical Journal},
keywords = {group action; Hochschild cohomology; equivariant formal deformation; equivariant cohomology},
language = {eng},
number = {3},
pages = {675-694},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equivariant one-parameter deformations of associative algebra morphisms},
url = {http://eudml.org/doc/299127},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Yadav, Raj Bhawan
TI - Equivariant one-parameter deformations of associative algebra morphisms
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 675
EP - 694
AB - We introduce equivariant formal deformation theory of associative algebra morphisms. We also present an equivariant deformation cohomology of associative algebra morphisms and using this we study the equivariant formal deformation theory of associative algebra morphisms. We discuss some examples of equivariant deformations and use the Maurer-Cartan equation to characterize equivariant deformations.
LA - eng
KW - group action; Hochschild cohomology; equivariant formal deformation; equivariant cohomology
UR - http://eudml.org/doc/299127
ER -

References

top
  1. Frégier, Y., 10.1007/s11005-004-4289-0, Lett. Math. Phys. 70 (2004), 97-107. (2004) Zbl1136.17306MR2108705DOI10.1007/s11005-004-4289-0
  2. Gerstenhaber, M., 10.2307/1970343, Ann. Math. (2) 78 (1963), 267-288. (1963) Zbl0131.27302MR0161898DOI10.2307/1970343
  3. Gerstenhaber, M., 10.2307/1970484, Ann. Math. (2) 79 (1964), 59-103. (1964) Zbl0123.03101MR0171807DOI10.2307/1970484
  4. Gerstenhaber, M., 10.2307/1970528, Ann. Math. (2) 84 (1966), 1-19. (1966) Zbl0147.28903MR0207793DOI10.2307/1970528
  5. Gerstenhaber, M., 10.2307/1970553, Ann. Math. (2) 88 (1968), 1-34. (1968) Zbl0182.05902MR0240167DOI10.2307/1970553
  6. Gerstenhaber, M., 10.2307/1970900, Ann. Math. (2) 99 (1974), 257-276. (1974) Zbl0281.16016MR0389978DOI10.2307/1970900
  7. Gerstenhaber, M., Schack, S. D., 10.1090/S0002-9947-1983-0704600-5, Trans. Am. Math. Soc. 279 (1983), 1-50. (1983) Zbl0544.18005MR0704600DOI10.1090/S0002-9947-1983-0704600-5
  8. Gerstenhaber, M., Schack, S. D., 10.1016/0021-8693(85)90104-8, J. Algebra 95 (1985), 245-262. (1985) Zbl0595.16021MR0797666DOI10.1016/0021-8693(85)90104-8
  9. Kodaira, K., Spencer, D. C., 10.2307/1970009, Ann. Math. (2) 67 (1958), 328-401. (1958) Zbl0128.16901MR0112154DOI10.2307/1970009
  10. Kodaira, K., Spencer, D. C., 10.2307/1969867, Ann. Math. (2) 67 (1958), 403-466. (1958) Zbl1307.14016MR0112154DOI10.2307/1969867
  11. Kodaira, K., Spencer, D. C., 10.2307/1969879, Ann. Math. (2) 71 (1960), 43-76. (1960) Zbl0128.16902MR0115189DOI10.2307/1969879
  12. Majumdar, A., Mukherjee, G., 10.1023/A:1020833326579, -Theory 27 (2002), 33-60. (2002) Zbl1016.16026MR1936584DOI10.1023/A:1020833326579
  13. Mandal, A., 10.4310/HHA.2007.v9.n1.a17, Homology Homotopy Appl. 9 (2007), 439-450. (2007) Zbl1162.17002MR2299806DOI10.4310/HHA.2007.v9.n1.a17
  14. Mukherjee, G., Yadav, R. B., 10.1142/S0219498820501145, J. Algebra Appl. 19 (2020), Article ID 2050114, 18 pages. (2020) Zbl1440.13064MR4120091DOI10.1142/S0219498820501145
  15. A. Nijenhuis, R. W. Richardson, Jr., 10.1090/S0002-9904-1966-11401-5, Bull. Am. Math. Soc. 72 (1966), 1-29. (1966) Zbl0136.30502MR0195995DOI10.1090/S0002-9904-1966-11401-5
  16. A. Nijenhuis, R. W. Richardson, Jr., 10.1090/S0002-9904-1967-11703-8, Bull. Am. Math. Soc. 73 (1967), 175-179. (1967) Zbl0153.04402MR0204575DOI10.1090/S0002-9904-1967-11703-8
  17. Yau, D., 10.1142/S1005386708000254, Algebra Colloq. 15 (2008), 279-292. (2008) Zbl1177.17004MR2400183DOI10.1142/S1005386708000254

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.