Some properties of algebras of real-valued measurable functions
Ali Akbar Estaji; Ahmad Mahmoudi Darghadam
Archivum Mathematicum (2023)
- Volume: 059, Issue: 5, page 383-395
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topEstaji, Ali Akbar, and Mahmoudi Darghadam, Ahmad. "Some properties of algebras of real-valued measurable functions." Archivum Mathematicum 059.5 (2023): 383-395. <http://eudml.org/doc/299132>.
@article{Estaji2023,
abstract = {Let $ M(X, \mathcal \{A\})$ ($M^\{*\}(X, \mathcal \{A\})$) be the $f$-ring of all (bounded) real-measurable functions on a $T$-measurable space $(X, \mathcal \{A\})$, let $M_\{K\}(X, \mathcal \{A\})$ be the family of all $f\in M(X, \mathcal \{A\})$ such that $\{\{\,\mathrm \{coz\}\}\}(f)$ is compact, and let $M_\{\infty \}(X, \mathcal \{A\})$ be all $f\in M(X, \mathcal \{A\})$ that $\lbrace x\in X: |f(x)|\ge \frac\{1\}\{n\}\rbrace $ is compact for any $n\in \mathbb \{N\}$. We introduce realcompact subrings of $M(X, \mathcal \{A\})$, we show that $M^\{*\}(X, \mathcal \{A\})$ is a realcompact subring of $M(X, \mathcal \{A\})$, and also $M(X, \mathcal \{A\})$ is a realcompact if and only if $(X, \mathcal \{A\})$ is a compact measurable space. For every nonzero real Riesz map $\varphi : M(X, \mathcal \{A\})\rightarrow \mathbb \{R\}$, we prove that there is an element $x_0\in X$ such that $\varphi (f) =f(x_0)$ for every $f\in M(X, \mathcal \{A\})$ if $(X, \mathcal \{A\})$ is a compact measurable space. We confirm that $M_\{\infty \}(X, \mathcal \{A\})$ is equal to the intersection of all free maximal ideals of $M^\{*\}(X, \mathcal \{A\})$, and also $M_\{K\}(X, \mathcal \{A\})$ is equal to the intersection of all free ideals of $M(X, \mathcal \{A\})$ (or $M^\{*\}(X, \mathcal \{A\})$). We show that $M_\{\infty \}(X, \mathcal \{A\})$ and $M_\{K\}(X, \mathcal \{A\})$ do not have free ideal.},
author = {Estaji, Ali Akbar, Mahmoudi Darghadam, Ahmad},
journal = {Archivum Mathematicum},
keywords = {real measurable function; lattice-ordered ring; realcompact measurable space; real Riesz map; free ideal},
language = {eng},
number = {5},
pages = {383-395},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some properties of algebras of real-valued measurable functions},
url = {http://eudml.org/doc/299132},
volume = {059},
year = {2023},
}
TY - JOUR
AU - Estaji, Ali Akbar
AU - Mahmoudi Darghadam, Ahmad
TI - Some properties of algebras of real-valued measurable functions
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 5
SP - 383
EP - 395
AB - Let $ M(X, \mathcal {A})$ ($M^{*}(X, \mathcal {A})$) be the $f$-ring of all (bounded) real-measurable functions on a $T$-measurable space $(X, \mathcal {A})$, let $M_{K}(X, \mathcal {A})$ be the family of all $f\in M(X, \mathcal {A})$ such that ${{\,\mathrm {coz}}}(f)$ is compact, and let $M_{\infty }(X, \mathcal {A})$ be all $f\in M(X, \mathcal {A})$ that $\lbrace x\in X: |f(x)|\ge \frac{1}{n}\rbrace $ is compact for any $n\in \mathbb {N}$. We introduce realcompact subrings of $M(X, \mathcal {A})$, we show that $M^{*}(X, \mathcal {A})$ is a realcompact subring of $M(X, \mathcal {A})$, and also $M(X, \mathcal {A})$ is a realcompact if and only if $(X, \mathcal {A})$ is a compact measurable space. For every nonzero real Riesz map $\varphi : M(X, \mathcal {A})\rightarrow \mathbb {R}$, we prove that there is an element $x_0\in X$ such that $\varphi (f) =f(x_0)$ for every $f\in M(X, \mathcal {A})$ if $(X, \mathcal {A})$ is a compact measurable space. We confirm that $M_{\infty }(X, \mathcal {A})$ is equal to the intersection of all free maximal ideals of $M^{*}(X, \mathcal {A})$, and also $M_{K}(X, \mathcal {A})$ is equal to the intersection of all free ideals of $M(X, \mathcal {A})$ (or $M^{*}(X, \mathcal {A})$). We show that $M_{\infty }(X, \mathcal {A})$ and $M_{K}(X, \mathcal {A})$ do not have free ideal.
LA - eng
KW - real measurable function; lattice-ordered ring; realcompact measurable space; real Riesz map; free ideal
UR - http://eudml.org/doc/299132
ER -
References
top- Acharyya, S., Acharyya, S.K., Bag, S., Sack, J., Recent progress in rings and subrings of real valued measurable functions, math.GN, 6 Nov. (2018), http://arxiv.org/abs/1811.02126v1. MR4149117
- Aliabad, A.R., Azarpanah, F., Namdari, M., Rings of continuous functions vanishing at infinity, Comment. Mat. Univ. Carolinae 45 (3) (2004), 519–533. (2004) MR2103146
- Dube, T., 10.1007/s10474-010-0024-8, Acta Math. Hungar. 129 (3) (2010), 205–226. (2010) Zbl1299.06021MR2737723DOI10.1007/s10474-010-0024-8
- Ebrahimi, M.M., Karimi Feizabadi, A., 10.1007/s00012-005-1945-x, Algebra Universalis 54 (2005), 291–299. (2005) MR2219412DOI10.1007/s00012-005-1945-x
- Ebrahimi, M.M., Mahmoudi, M., Frame, Tech. report, Shahid Beheshti University, 1996. (1996)
- Ercan, Z., Onal, S., 10.1090/S0002-9939-05-07930-X, Amer. Math. Soc. 133 (2005), 3609–3611. (2005) MR2163596DOI10.1090/S0002-9939-05-07930-X
- Estaji, A.A., Mahmoudi Darghadam, A., Rings of real measurable functions vanishing at infinity on a measurable space, submitted. MR4028813
- Estaji, A.A., Mahmoudi Darghadam, A., On maximal ideals of L, J. Algebr. Syst. 6 (1) (2018), 43–57. (2018) MR3833289
- Estaji, A.A., Mahmoudi Darghadam, A., 10.2989/16073606.2018.1509151, Quaest. Math. 42 (9) (2019), 1141–1157, http://dx.doi.org/10.2989/16073606.2018.1509151. (2019) MR4028813DOI10.2989/16073606.2018.1509151
- Estaji, A.A., Mahmoudi Darghadam, A., 10.15672/hujms.624015, Hacet. J. Math. Stat. 49 (2) (2020), 854–868, http://dx.doi.org/10.15672/hujms.624015. (2020) MR4089915DOI10.15672/hujms.624015
- Estaji, A.A., Mahmoudi Darghadam, A., Yousefpour, H., 10.2298/FIL1815191E, Filomat 32 (15) (2018), 5191–5203, https://doi.org/10.2298/FIL1815191E. (2018) MR3898565DOI10.2298/FIL1815191E
- Gillman, L., Jerison, M., Rings of continuous functions, Springer Verlag, 1976. (1976) MR0407579
- Hager, A., 10.1215/S0012-7094-71-03804-X, Duke Math. J. 38 (1) (1971), 21–27. (1971) MR0273409DOI10.1215/S0012-7094-71-03804-X
- Hewitt, E., 10.1090/S0002-9947-1948-0026239-9, Trans. Amer. Math. Soc. 64 (1948), 45–99. (1948) MR0026239DOI10.1090/S0002-9947-1948-0026239-9
- Kohls, C.W., 10.4064/fm-45-1-28-50, Fund. Math. 45 (1957), 28–50. (1957) MR0102731DOI10.4064/fm-45-1-28-50
- Rudin, W., Real and complex analysis, 3rd ed., New York: McGraw-Hill Book Co., 1987. (1987) MR0924157
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.