Webster pseudo-torsion formulas of CR manifolds
Archivum Mathematicum (2023)
- Volume: 059, Issue: 4, page 351-367
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topYin, Ho Chor. "Webster pseudo-torsion formulas of CR manifolds." Archivum Mathematicum 059.4 (2023): 351-367. <http://eudml.org/doc/299136>.
@article{Yin2023,
abstract = {In this article, we obtain a formula for Webster pseudo-torsion for the link of an isolated singularity of a $n$-dimensional complex subvariety in $\mathbb \{C\}^\{n+1\}$ and we present an alternative proof of the Li-Luk formula for Webster pseudo-torsion for a real hypersurface in $\mathbb \{C\}^\{n+1\}$.},
author = {Yin, Ho Chor},
journal = {Archivum Mathematicum},
keywords = {pseudohermitian manifold; real hypersuface; Webster pseudo-torsion; CR geometry},
language = {eng},
number = {4},
pages = {351-367},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Webster pseudo-torsion formulas of CR manifolds},
url = {http://eudml.org/doc/299136},
volume = {059},
year = {2023},
}
TY - JOUR
AU - Yin, Ho Chor
TI - Webster pseudo-torsion formulas of CR manifolds
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 4
SP - 351
EP - 367
AB - In this article, we obtain a formula for Webster pseudo-torsion for the link of an isolated singularity of a $n$-dimensional complex subvariety in $\mathbb {C}^{n+1}$ and we present an alternative proof of the Li-Luk formula for Webster pseudo-torsion for a real hypersurface in $\mathbb {C}^{n+1}$.
LA - eng
KW - pseudohermitian manifold; real hypersuface; Webster pseudo-torsion; CR geometry
UR - http://eudml.org/doc/299136
ER -
References
top- Chern, S.S., Moser, J., 10.1007/BF02392146, Acta Math. 133 (1974), 219–271. (1974) MR0425155DOI10.1007/BF02392146
- Kan, S.J., 10.1007/BF01446285, Math. Ann. 304 (1996), 63–92. (1996) MR1367883DOI10.1007/BF01446285
- Li, S.Y., Luk, H.S., 10.1007/s11425-006-2071-8, Sci. China Ser. A 49 (2006), 1662–1682. (2006) MR2288223DOI10.1007/s11425-006-2071-8
- Luk, H.S., [unknown]
- Tanaka, N., A differential geometric study of strongly pseudoconvex manifold, Kinokuniya Book-Store Co., 1975. (1975) MR0399517
- Webster, S.M., 10.4310/jdg/1214434345, J. Differential Geom. 13 (1978), 265–270. (1978) MR0520599DOI10.4310/jdg/1214434345
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.