Matrix representation of finite effect algebras
Grzegorz Bińczak; Joanna Kaleta; Andrzej Zembrzuski
Kybernetika (2023)
- Volume: 59, Issue: 5, page 737-751
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBińczak, Grzegorz, Kaleta, Joanna, and Zembrzuski, Andrzej. "Matrix representation of finite effect algebras." Kybernetika 59.5 (2023): 737-751. <http://eudml.org/doc/299156>.
@article{Bińczak2023,
abstract = {In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra $E$ we construct set of matrices $M(E)$ in such a way that effect algebras $E_1$ and $E_2$ are isomorphic if and only if $M(E_1)=M(E_2)$. The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most $8$.},
author = {Bińczak, Grzegorz, Kaleta, Joanna, Zembrzuski, Andrzej},
journal = {Kybernetika},
keywords = {effect algebra; state of effect algebra},
language = {eng},
number = {5},
pages = {737-751},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Matrix representation of finite effect algebras},
url = {http://eudml.org/doc/299156},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Bińczak, Grzegorz
AU - Kaleta, Joanna
AU - Zembrzuski, Andrzej
TI - Matrix representation of finite effect algebras
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 5
SP - 737
EP - 751
AB - In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra $E$ we construct set of matrices $M(E)$ in such a way that effect algebras $E_1$ and $E_2$ are isomorphic if and only if $M(E_1)=M(E_2)$. The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most $8$.
LA - eng
KW - effect algebra; state of effect algebra
UR - http://eudml.org/doc/299156
ER -
References
top- Bush, P., Lahti, P. J., Mittelstadt, P., , In: The Quantum Theory of Measurement. Lecture Notes in Physics Monographs, Vol 2. Springer, Berlin, Heidelberg 1991. MR1176754DOI
- Bush, P., Grabowski, M., Lahti, P. J., , Springer-Verlag, Berlin 1995. MR1356220DOI
- Dvurečenskij, A., Pulmannová, S., , Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava 2000. Zbl0987.81005MR1861369DOI
- Foulis, D. J., Bennett, M. K., , Found. Phys. 24 (1994), 1331-1352. Zbl1213.06004MR1304942DOI
- Giuntini, R., Grueuling, H., , Found. Phys. 19 (1989), 931-945. MR1013913DOI
- Greechie, R. J., , J. Combinat. Theory 10 (1971), 119-132. MR0274355DOI
- Gudder, S., , Found. Phys. 27 (1997), 287-304. MR1444965DOI
- Kopka, F., Chovanec, F., -posets., Math. Slovaca 44 (1994), 21-34. MR1290269
- Maxima, Maxima, https://maxima.sourceforge.io.
- Riečanová, Z., , Int. J. Theoret. Physics 40 (2001), 10, 1683-1691. MR1858217DOI
- Ji, Wei, , Fuzzy Sets Systems 236 (2014), 113-121. MR3132755DOI
- Wikipedia, Rouché-Capelli theorem, https://en.wikipedia.org/wiki/Rouché-Capelli_theorem.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.