Matrix representation of finite effect algebras

Grzegorz Bińczak; Joanna Kaleta; Andrzej Zembrzuski

Kybernetika (2023)

  • Volume: 59, Issue: 5, page 737-751
  • ISSN: 0023-5954

Abstract

top
In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra E we construct set of matrices M ( E ) in such a way that effect algebras E 1 and E 2 are isomorphic if and only if M ( E 1 ) = M ( E 2 ) . The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most 8 .

How to cite

top

Bińczak, Grzegorz, Kaleta, Joanna, and Zembrzuski, Andrzej. "Matrix representation of finite effect algebras." Kybernetika 59.5 (2023): 737-751. <http://eudml.org/doc/299156>.

@article{Bińczak2023,
abstract = {In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra $E$ we construct set of matrices $M(E)$ in such a way that effect algebras $E_1$ and $E_2$ are isomorphic if and only if $M(E_1)=M(E_2)$. The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most $8$.},
author = {Bińczak, Grzegorz, Kaleta, Joanna, Zembrzuski, Andrzej},
journal = {Kybernetika},
keywords = {effect algebra; state of effect algebra},
language = {eng},
number = {5},
pages = {737-751},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Matrix representation of finite effect algebras},
url = {http://eudml.org/doc/299156},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Bińczak, Grzegorz
AU - Kaleta, Joanna
AU - Zembrzuski, Andrzej
TI - Matrix representation of finite effect algebras
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 5
SP - 737
EP - 751
AB - In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra $E$ we construct set of matrices $M(E)$ in such a way that effect algebras $E_1$ and $E_2$ are isomorphic if and only if $M(E_1)=M(E_2)$. The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most $8$.
LA - eng
KW - effect algebra; state of effect algebra
UR - http://eudml.org/doc/299156
ER -

References

top
  1. Bush, P., Lahti, P. J., Mittelstadt, P., , In: The Quantum Theory of Measurement. Lecture Notes in Physics Monographs, Vol 2. Springer, Berlin, Heidelberg 1991. MR1176754DOI
  2. Bush, P., Grabowski, M., Lahti, P. J., , Springer-Verlag, Berlin 1995. MR1356220DOI
  3. Dvurečenskij, A., Pulmannová, S., , Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava 2000. Zbl0987.81005MR1861369DOI
  4. Foulis, D. J., Bennett, M. K., , Found. Phys. 24 (1994), 1331-1352. Zbl1213.06004MR1304942DOI
  5. Giuntini, R., Grueuling, H., , Found. Phys. 19 (1989), 931-945. MR1013913DOI
  6. Greechie, R. J., , J. Combinat. Theory 10 (1971), 119-132. MR0274355DOI
  7. Gudder, S., , Found. Phys. 27 (1997), 287-304. MR1444965DOI
  8. Kopka, F., Chovanec, F., D -posets., Math. Slovaca 44 (1994), 21-34. MR1290269
  9. Maxima, Maxima, https://maxima.sourceforge.io. 
  10. Riečanová, Z., , Int. J. Theoret. Physics 40 (2001), 10, 1683-1691. MR1858217DOI
  11. Ji, Wei, , Fuzzy Sets Systems 236 (2014), 113-121. MR3132755DOI
  12. Wikipedia, Rouché-Capelli theorem, https://en.wikipedia.org/wiki/Rouché-Capelli_theorem. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.