Practical -stability behavior of time-varying nonlinear systems
Abir Kicha; Hanen Damak; Mohamed Ali Hammami
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 2, page 209-226
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKicha, Abir, Damak, Hanen, and Hammami, Mohamed Ali. "Practical $h$-stability behavior of time-varying nonlinear systems." Commentationes Mathematicae Universitatis Carolinae 64.2 (2023): 209-226. <http://eudml.org/doc/299163>.
@article{Kicha2023,
abstract = {We deal with the problem of practical uniform $h$-stability for nonlinear time-varying perturbed differential equations. The main aim is to give sufficient conditions on the linear and perturbed terms to guarantee the global existence and the practical uniform $h$-stability of the solutions based on Gronwall’s type integral inequalities. Several numerical examples and an application to control systems with simulations are presented to illustrate the applicability of the obtained results.},
author = {Kicha, Abir, Damak, Hanen, Hammami, Mohamed Ali},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Gronwall’s inequality; perturbed system; practical $h$-stability},
language = {eng},
number = {2},
pages = {209-226},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Practical $h$-stability behavior of time-varying nonlinear systems},
url = {http://eudml.org/doc/299163},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Kicha, Abir
AU - Damak, Hanen
AU - Hammami, Mohamed Ali
TI - Practical $h$-stability behavior of time-varying nonlinear systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 2
SP - 209
EP - 226
AB - We deal with the problem of practical uniform $h$-stability for nonlinear time-varying perturbed differential equations. The main aim is to give sufficient conditions on the linear and perturbed terms to guarantee the global existence and the practical uniform $h$-stability of the solutions based on Gronwall’s type integral inequalities. Several numerical examples and an application to control systems with simulations are presented to illustrate the applicability of the obtained results.
LA - eng
KW - Gronwall’s inequality; perturbed system; practical $h$-stability
UR - http://eudml.org/doc/299163
ER -
References
top- Aeyels D., Peuteman J., 10.1109/9.701102, IEEE Trans. Automat. Control 43 (1998), no. 7, 968–971. MR1633504DOI10.1109/9.701102
- Bay N. S., Phat V. N., Stability of nonlinear difference time-varying systems with delays, Vietnam J. Math. 4 (1999), 129–136. MR1810578
- Bellman R., Stability Theory of Differential Equations, McGraw-Hill Book Co., New York, 1953. MR0061235
- Ben Hamed B., 10.1007/s00009-012-0227-z, Mediterr. J. Math. 10 (2013), no. 3, 1591–1608. MR3080228DOI10.1007/s00009-012-0227-z
- Ben Hamed B., Ellouze I., Hammami M. A., 10.1007/s00009-010-0083-7, Mediterr. J. Math. 8 (2011), no. 4, 603–616. MR2860688DOI10.1007/s00009-010-0083-7
- Ben Hamed B., Haj Salem Z., Hammami M. A., 10.1007/s11071-013-0868-x, Nonlinear Dynam. 73 (2013), no. 3, 1353–1365. MR3083786DOI10.1007/s11071-013-0868-x
- Ben Makhlouf A., Hammami M. A., 10.1002/mma.3236, Math. Methods Appl. Sci. 38 (2015), no. 12, 2496–2505. MR3372295DOI10.1002/mma.3236
- Damak H., 10.5890/JAND.2021.12.006, J. Appl. Nonlinear Dyn. 10 (2021), no. 4, 659–669. MR4292264DOI10.5890/JAND.2021.12.006
- Damak H., Hadj Taieb N., Hammami M. A., 10.1080/00207179.2021.1986640, Internat. J. Control 96 (2023), no. 1, 214–222. MR4532849DOI10.1080/00207179.2021.1986640
- Damak H., Hammami M. A., Kalitine B., 10.1007/s12591-012-0157-z, Differ. Equ. Dyn. Syst. 22 (2014), no. 2, 113–124. MR3183099DOI10.1007/s12591-012-0157-z
- Damak H., Hammami M. A., Kicha A., 10.53733/79, New Zealand J. Math. 50 (2020), 109–123. MR4216440DOI10.53733/79
- Damak H., Hammami M. A., Kicha A., 10.1007/s00009-020-01518-2, Mediterr. J. Math. 17 (2020), no. 3, Paper No. 88, 18 pages. MR4100040DOI10.1007/s00009-020-01518-2
- Damak H., Hammami M. A., Kicha A., Growth conditions for asymptotic behavior of solutions for certain time-varying differential equations, Differ. Uravn. Protsessy. Upr. (2021), no. 1, 423–447. MR4241341
- Damak H., Hammami M. A., Kicha A., 10.1108/COMPEL-05-2020-0178, COMPEL-Int. J. Comput. Math. Electr. Electron Eng. 40 (2021), no. 4, 888–904. DOI10.1108/COMPEL-05-2020-0178
- Dragomir S. S., Some Gronwall Type Inequalities and Applications, School of Communications and Informatics, Victoria University of Technology, Melbourne City, 2002. MR2016992
- Ellouze I., Hammami M. A., Practical stability of impulsive control systems with multiple time delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 3, 341–356. MR3098457
- Ghanmi B., 10.1007/s10883-019-09454-5, J. Dyn. Control Syst. 25 (2019), no. 4, 691–713. MR3995960DOI10.1007/s10883-019-09454-5
- Hammi M., Hammami M. A., 10.4067/S0719-06462015000300004, Cubo 17 (2015), no. 3, 53–70. MR3445845DOI10.4067/S0719-06462015000300004
- Khalil H. K., Nonlinear Systems, Prentice-Hall, New York, 2002. Zbl1140.93456MR1201326
- Medina R., 10.1006/jmaa.1996.0453, J. Math. Anal. Appl. 204 (1996), no. 2, 545–553. MR1421464DOI10.1006/jmaa.1996.0453
- Pinto M., 10.1524/anly.1984.4.12.161, Analysis 4 (1984), no. 1–2, 161–175. MR0775553DOI10.1524/anly.1984.4.12.161
- Pinto M., 10.1080/00036819208840049, Appl. Anal. 43 (1992), no. 1–2, 1–20. MR1284758DOI10.1080/00036819208840049
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.