Practical h -stability behavior of time-varying nonlinear systems

Abir Kicha; Hanen Damak; Mohamed Ali Hammami

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 2, page 209-226
  • ISSN: 0010-2628

Abstract

top
We deal with the problem of practical uniform h -stability for nonlinear time-varying perturbed differential equations. The main aim is to give sufficient conditions on the linear and perturbed terms to guarantee the global existence and the practical uniform h -stability of the solutions based on Gronwall’s type integral inequalities. Several numerical examples and an application to control systems with simulations are presented to illustrate the applicability of the obtained results.

How to cite

top

Kicha, Abir, Damak, Hanen, and Hammami, Mohamed Ali. "Practical $h$-stability behavior of time-varying nonlinear systems." Commentationes Mathematicae Universitatis Carolinae 64.2 (2023): 209-226. <http://eudml.org/doc/299163>.

@article{Kicha2023,
abstract = {We deal with the problem of practical uniform $h$-stability for nonlinear time-varying perturbed differential equations. The main aim is to give sufficient conditions on the linear and perturbed terms to guarantee the global existence and the practical uniform $h$-stability of the solutions based on Gronwall’s type integral inequalities. Several numerical examples and an application to control systems with simulations are presented to illustrate the applicability of the obtained results.},
author = {Kicha, Abir, Damak, Hanen, Hammami, Mohamed Ali},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Gronwall’s inequality; perturbed system; practical $h$-stability},
language = {eng},
number = {2},
pages = {209-226},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Practical $h$-stability behavior of time-varying nonlinear systems},
url = {http://eudml.org/doc/299163},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Kicha, Abir
AU - Damak, Hanen
AU - Hammami, Mohamed Ali
TI - Practical $h$-stability behavior of time-varying nonlinear systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 2
SP - 209
EP - 226
AB - We deal with the problem of practical uniform $h$-stability for nonlinear time-varying perturbed differential equations. The main aim is to give sufficient conditions on the linear and perturbed terms to guarantee the global existence and the practical uniform $h$-stability of the solutions based on Gronwall’s type integral inequalities. Several numerical examples and an application to control systems with simulations are presented to illustrate the applicability of the obtained results.
LA - eng
KW - Gronwall’s inequality; perturbed system; practical $h$-stability
UR - http://eudml.org/doc/299163
ER -

References

top
  1. Aeyels D., Peuteman J., 10.1109/9.701102, IEEE Trans. Automat. Control 43 (1998), no. 7, 968–971. MR1633504DOI10.1109/9.701102
  2. Bay N. S., Phat V. N., Stability of nonlinear difference time-varying systems with delays, Vietnam J. Math. 4 (1999), 129–136. MR1810578
  3. Bellman R., Stability Theory of Differential Equations, McGraw-Hill Book Co., New York, 1953. MR0061235
  4. Ben Hamed B., 10.1007/s00009-012-0227-z, Mediterr. J. Math. 10 (2013), no. 3, 1591–1608. MR3080228DOI10.1007/s00009-012-0227-z
  5. Ben Hamed B., Ellouze I., Hammami M. A., 10.1007/s00009-010-0083-7, Mediterr. J. Math. 8 (2011), no. 4, 603–616. MR2860688DOI10.1007/s00009-010-0083-7
  6. Ben Hamed B., Haj Salem Z., Hammami M. A., 10.1007/s11071-013-0868-x, Nonlinear Dynam. 73 (2013), no. 3, 1353–1365. MR3083786DOI10.1007/s11071-013-0868-x
  7. Ben Makhlouf A., Hammami M. A., 10.1002/mma.3236, Math. Methods Appl. Sci. 38 (2015), no. 12, 2496–2505. MR3372295DOI10.1002/mma.3236
  8. Damak H., 10.5890/JAND.2021.12.006, J. Appl. Nonlinear Dyn. 10 (2021), no. 4, 659–669. MR4292264DOI10.5890/JAND.2021.12.006
  9. Damak H., Hadj Taieb N., Hammami M. A., 10.1080/00207179.2021.1986640, Internat. J. Control 96 (2023), no. 1, 214–222. MR4532849DOI10.1080/00207179.2021.1986640
  10. Damak H., Hammami M. A., Kalitine B., 10.1007/s12591-012-0157-z, Differ. Equ. Dyn. Syst. 22 (2014), no. 2, 113–124. MR3183099DOI10.1007/s12591-012-0157-z
  11. Damak H., Hammami M. A., Kicha A., 10.53733/79, New Zealand J. Math. 50 (2020), 109–123. MR4216440DOI10.53733/79
  12. Damak H., Hammami M. A., Kicha A., 10.1007/s00009-020-01518-2, Mediterr. J. Math. 17 (2020), no. 3, Paper No. 88, 18 pages. MR4100040DOI10.1007/s00009-020-01518-2
  13. Damak H., Hammami M. A., Kicha A., Growth conditions for asymptotic behavior of solutions for certain time-varying differential equations, Differ. Uravn. Protsessy. Upr. (2021), no. 1, 423–447. MR4241341
  14. Damak H., Hammami M. A., Kicha A., 10.1108/COMPEL-05-2020-0178, COMPEL-Int. J. Comput. Math. Electr. Electron Eng. 40 (2021), no. 4, 888–904. DOI10.1108/COMPEL-05-2020-0178
  15. Dragomir S. S., Some Gronwall Type Inequalities and Applications, School of Communications and Informatics, Victoria University of Technology, Melbourne City, 2002. MR2016992
  16. Ellouze I., Hammami M. A., Practical stability of impulsive control systems with multiple time delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 3, 341–356. MR3098457
  17. Ghanmi B., 10.1007/s10883-019-09454-5, J. Dyn. Control Syst. 25 (2019), no. 4, 691–713. MR3995960DOI10.1007/s10883-019-09454-5
  18. Hammi M., Hammami M. A., 10.4067/S0719-06462015000300004, Cubo 17 (2015), no. 3, 53–70. MR3445845DOI10.4067/S0719-06462015000300004
  19. Khalil H. K., Nonlinear Systems, Prentice-Hall, New York, 2002. Zbl1140.93456MR1201326
  20. Medina R., 10.1006/jmaa.1996.0453, J. Math. Anal. Appl. 204 (1996), no. 2, 545–553. MR1421464DOI10.1006/jmaa.1996.0453
  21. Pinto M., 10.1524/anly.1984.4.12.161, Analysis 4 (1984), no. 1–2, 161–175. MR0775553DOI10.1524/anly.1984.4.12.161
  22. Pinto M., 10.1080/00036819208840049, Appl. Anal. 43 (1992), no. 1–2, 1–20. MR1284758DOI10.1080/00036819208840049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.