Isomorphic properties in spaces of compact operators
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 2, page 175-184
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGhenciu, Ioana. "Isomorphic properties in spaces of compact operators." Commentationes Mathematicae Universitatis Carolinae 64.2 (2023): 175-184. <http://eudml.org/doc/299165>.
@article{Ghenciu2023,
abstract = {We introduce the definition of $p$-limited completely continuous operators, $1\le p<\infty $. The question of whether a space of operators has the property that every $p$-limited subset is relative compact when the dual of the domain and the codomain have this property is studied using $p$-limited completely continuous evaluation operators.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$p$-limited set; limited set; space of compact operators},
language = {eng},
number = {2},
pages = {175-184},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Isomorphic properties in spaces of compact operators},
url = {http://eudml.org/doc/299165},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Ghenciu, Ioana
TI - Isomorphic properties in spaces of compact operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 2
SP - 175
EP - 184
AB - We introduce the definition of $p$-limited completely continuous operators, $1\le p<\infty $. The question of whether a space of operators has the property that every $p$-limited subset is relative compact when the dual of the domain and the codomain have this property is studied using $p$-limited completely continuous evaluation operators.
LA - eng
KW - $p$-limited set; limited set; space of compact operators
UR - http://eudml.org/doc/299165
ER -
References
top- Bahreini M., Bator E., Ghenciu I., 10.4153/CMB-2011-097-2, Canad. Math. Bull. 55 (2012), no. 3, 449–461. MR2957262DOI10.4153/CMB-2011-097-2
- Bourgain J., New Classes of -spaces, Lecture Notes in Mathematics, 889, Springer, Berlin, 1981. MR0639014
- Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
- Cilia R., Emmanuele G., 10.4064/cm6184-12-2015, Colloq. Math. 146 (2017), no. 2, 239–252. MR3622375DOI10.4064/cm6184-12-2015
- Delgado J. M., Piñeiro C., A note on -limited sets, J. Math. Appl. 410 (2014), no. 2, 713–718. MR3111861
- Diestel J., A survey of results related to the Dunford–Pettis property, Proc. of the Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, N.C., 1979, Contemp. Math., 2, American Mathematical Society, Providence, 1980, pages 15–60. MR0621850
- Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR0737004
- Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl1139.47021MR1342297
- Diestel J., Uhl J. J., Jr., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl0521.46035MR0453964
- Drewnowski L., Emmanuele G., 10.1007/BF02850021, Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391. MR1053378DOI10.1007/BF02850021
- Emmanuele G., A dual characterization of Banach spaces not containing , Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR0861172
- Emmanuele G., 10.1007/BF01190118, Arch. Math. (Basel) 58 (1992), no. 5, 477–485. MR1156580DOI10.1007/BF01190118
- Fourie J. H., Zeekoei E. D., 10.2989/16073606.2017.1301591, Quaest. Math. 40 (2017), no. 5, 563–579. MR3691468DOI10.2989/16073606.2017.1301591
- Ghenciu I., 10.1215/20088752-3624814, Ann. Funct. Anal. 7 (2016), no. 3, 470–483. MR3528378DOI10.1215/20088752-3624814
- Ghenciu I., 10.2989/16073606.2017.1402383, Quaest. Math. 41 (2018), 811–828. MR3857131DOI10.2989/16073606.2017.1402383
- Ghenciu I., 10.1007/s00605-022-01738-6, Monatsh. Math. 200 (2023), no. 2, 255–270. MR4544297DOI10.1007/s00605-022-01738-6
- Ghenciu I., Lewis P., 10.4064/cm106-2-11, Colloq. Math. 106 (2006), no. 2, 311–324. MR2283818DOI10.4064/cm106-2-11
- Ghenciu I., Lewis P., 10.4064/ba56-3-7, Bull. Pol. Acad. Sci. Math. 56 (2008), no. 3–4, 239–256. Zbl1167.46016MR2481977DOI10.4064/ba56-3-7
- Karn A. K., Sinha D. P., 10.1017/S0017089513000360, Glasg. Math. J. 56 (2014), no. 2, 427–437. MR3187909DOI10.1017/S0017089513000360
- Palmer T. W., 10.1090/S0002-9939-1969-0235425-3, Proc. Amer. Math. Soc. 20 (1969), 101–106. MR0235425DOI10.1090/S0002-9939-1969-0235425-3
- Pełczyński A., Semadeni Z., 10.4064/sm-18-2-211-222, Studia Math. 18 (1959), 211–222. MR0107806DOI10.4064/sm-18-2-211-222
- Ruess W., Duality and geometry of spaces of compact operators, Functional Analysis: Surveys and Recent Results, III, Paderborn, 1983, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland Publishing Co., Amsterdam, 1984, pages 59–78. Zbl0573.46007MR0761373
- Salimi M., Mostaghioun S. M., 10.15352/bjma/1313363004, Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR2792501DOI10.15352/bjma/1313363004
- Schlumprecht T., Limited Sets in Banach Spaces, Ph.D. Dissertation, Ludwigs-Maxmilians-Universität, Münich, 1987.
- Wen Y., Chen J., Characterizations of Banach spaces with relatively compact Dunford–Pettis sets, Adv. Math. (China) 45 (2016), no. 1, 122–132. MR3483491
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.