Isomorphic properties in spaces of compact operators

Ioana Ghenciu

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 2, page 175-184
  • ISSN: 0010-2628

Abstract

top
We introduce the definition of p -limited completely continuous operators, 1 p < . The question of whether a space of operators has the property that every p -limited subset is relative compact when the dual of the domain and the codomain have this property is studied using p -limited completely continuous evaluation operators.

How to cite

top

Ghenciu, Ioana. "Isomorphic properties in spaces of compact operators." Commentationes Mathematicae Universitatis Carolinae 64.2 (2023): 175-184. <http://eudml.org/doc/299165>.

@article{Ghenciu2023,
abstract = {We introduce the definition of $p$-limited completely continuous operators, $1\le p<\infty $. The question of whether a space of operators has the property that every $p$-limited subset is relative compact when the dual of the domain and the codomain have this property is studied using $p$-limited completely continuous evaluation operators.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$p$-limited set; limited set; space of compact operators},
language = {eng},
number = {2},
pages = {175-184},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Isomorphic properties in spaces of compact operators},
url = {http://eudml.org/doc/299165},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Ghenciu, Ioana
TI - Isomorphic properties in spaces of compact operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 2
SP - 175
EP - 184
AB - We introduce the definition of $p$-limited completely continuous operators, $1\le p<\infty $. The question of whether a space of operators has the property that every $p$-limited subset is relative compact when the dual of the domain and the codomain have this property is studied using $p$-limited completely continuous evaluation operators.
LA - eng
KW - $p$-limited set; limited set; space of compact operators
UR - http://eudml.org/doc/299165
ER -

References

top
  1. Bahreini M., Bator E., Ghenciu I., 10.4153/CMB-2011-097-2, Canad. Math. Bull. 55 (2012), no. 3, 449–461. MR2957262DOI10.4153/CMB-2011-097-2
  2. Bourgain J., New Classes of p -spaces, Lecture Notes in Mathematics, 889, Springer, Berlin, 1981. MR0639014
  3. Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
  4. Cilia R., Emmanuele G., 10.4064/cm6184-12-2015, Colloq. Math. 146 (2017), no. 2, 239–252. MR3622375DOI10.4064/cm6184-12-2015
  5. Delgado J. M., Piñeiro C., A note on p -limited sets, J. Math. Appl. 410 (2014), no. 2, 713–718. MR3111861
  6. Diestel J., A survey of results related to the Dunford–Pettis property, Proc. of the Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, N.C., 1979, Contemp. Math., 2, American Mathematical Society, Providence, 1980, pages 15–60. MR0621850
  7. Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR0737004
  8. Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl1139.47021MR1342297
  9. Diestel J., Uhl J. J., Jr., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl0521.46035MR0453964
  10. Drewnowski L., Emmanuele G., 10.1007/BF02850021, Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391. MR1053378DOI10.1007/BF02850021
  11. Emmanuele G., A dual characterization of Banach spaces not containing l 1 , Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR0861172
  12. Emmanuele G., 10.1007/BF01190118, Arch. Math. (Basel) 58 (1992), no. 5, 477–485. MR1156580DOI10.1007/BF01190118
  13. Fourie J. H., Zeekoei E. D., 10.2989/16073606.2017.1301591, Quaest. Math. 40 (2017), no. 5, 563–579. MR3691468DOI10.2989/16073606.2017.1301591
  14. Ghenciu I., 10.1215/20088752-3624814, Ann. Funct. Anal. 7 (2016), no. 3, 470–483. MR3528378DOI10.1215/20088752-3624814
  15. Ghenciu I., 10.2989/16073606.2017.1402383, Quaest. Math. 41 (2018), 811–828. MR3857131DOI10.2989/16073606.2017.1402383
  16. Ghenciu I., 10.1007/s00605-022-01738-6, Monatsh. Math. 200 (2023), no. 2, 255–270. MR4544297DOI10.1007/s00605-022-01738-6
  17. Ghenciu I., Lewis P., 10.4064/cm106-2-11, Colloq. Math. 106 (2006), no. 2, 311–324. MR2283818DOI10.4064/cm106-2-11
  18. Ghenciu I., Lewis P., 10.4064/ba56-3-7, Bull. Pol. Acad. Sci. Math. 56 (2008), no. 3–4, 239–256. Zbl1167.46016MR2481977DOI10.4064/ba56-3-7
  19. Karn A. K., Sinha D. P., 10.1017/S0017089513000360, Glasg. Math. J. 56 (2014), no. 2, 427–437. MR3187909DOI10.1017/S0017089513000360
  20. Palmer T. W., 10.1090/S0002-9939-1969-0235425-3, Proc. Amer. Math. Soc. 20 (1969), 101–106. MR0235425DOI10.1090/S0002-9939-1969-0235425-3
  21. Pełczyński A., Semadeni Z., 10.4064/sm-18-2-211-222, Studia Math. 18 (1959), 211–222. MR0107806DOI10.4064/sm-18-2-211-222
  22. Ruess W., Duality and geometry of spaces of compact operators, Functional Analysis: Surveys and Recent Results, III, Paderborn, 1983, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland Publishing Co., Amsterdam, 1984, pages 59–78. Zbl0573.46007MR0761373
  23. Salimi M., Mostaghioun S. M., 10.15352/bjma/1313363004, Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR2792501DOI10.15352/bjma/1313363004
  24. Schlumprecht T., Limited Sets in Banach Spaces, Ph.D. Dissertation, Ludwigs-Maxmilians-Universität, Münich, 1987. 
  25. Wen Y., Chen J., Characterizations of Banach spaces with relatively compact Dunford–Pettis sets, Adv. Math. (China) 45 (2016), no. 1, 122–132. MR3483491

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.