On the stability analysis of Darboux problem on both bounded and unbounded domains

Canan Çelik; Faruk Develi

Applications of Mathematics (2024)

  • Issue: 1, page 139-150
  • ISSN: 0862-7940

Abstract

top
In this paper, we first investigate the existence and uniqueness of solution for the Darboux problem with modified argument on both bounded and unbounded domains. Then, we derive different types of the Ulam stability for the proposed problem on these domains. Finally, we present some illustrative examples to support our results.

How to cite

top

Çelik, Canan, and Develi, Faruk. "On the stability analysis of Darboux problem on both bounded and unbounded domains." Applications of Mathematics (2024): 139-150. <http://eudml.org/doc/299199>.

@article{Çelik2024,
abstract = {In this paper, we first investigate the existence and uniqueness of solution for the Darboux problem with modified argument on both bounded and unbounded domains. Then, we derive different types of the Ulam stability for the proposed problem on these domains. Finally, we present some illustrative examples to support our results.},
author = {Çelik, Canan, Develi, Faruk},
journal = {Applications of Mathematics},
keywords = {Darboux problem; partial differential equation; Ulam-Hyers stability; Ulam-Hyers-Rassias stability; Wendorff lemma},
language = {eng},
number = {1},
pages = {139-150},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the stability analysis of Darboux problem on both bounded and unbounded domains},
url = {http://eudml.org/doc/299199},
year = {2024},
}

TY - JOUR
AU - Çelik, Canan
AU - Develi, Faruk
TI - On the stability analysis of Darboux problem on both bounded and unbounded domains
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 139
EP - 150
AB - In this paper, we first investigate the existence and uniqueness of solution for the Darboux problem with modified argument on both bounded and unbounded domains. Then, we derive different types of the Ulam stability for the proposed problem on these domains. Finally, we present some illustrative examples to support our results.
LA - eng
KW - Darboux problem; partial differential equation; Ulam-Hyers stability; Ulam-Hyers-Rassias stability; Wendorff lemma
UR - http://eudml.org/doc/299199
ER -

References

top
  1. Bainov, D., Simeonov, P., 10.1007/978-94-015-8034-2, Mathematics and Its Applications. East European Series 57. Kluwer Academic Publishers, Dordrecht (1992). (1992) Zbl0759.26012MR1171448DOI10.1007/978-94-015-8034-2
  2. Brzdęk, J., Popa, D., Raşa, I., 10.1016/j.jmaa.2017.04.022, J. Math. Anal. Appl. 453 (2017), 620-628. (2017) Zbl1404.34016MR3641794DOI10.1016/j.jmaa.2017.04.022
  3. Brzdęk, J., Popa, D., (eds.), T. M. Rassias, 10.1007/978-3-030-28972-0, Springer, Cham (2019). (2019) Zbl1431.39001MR3971238DOI10.1007/978-3-030-28972-0
  4. Çelik, C., Develi, F., 10.1007/s10998-021-00400-2, Period. Math. Hung. 84 (2022), 211-220. (2022) Zbl07551294MR4423476DOI10.1007/s10998-021-00400-2
  5. Dezső, G., The Darboux-Ionescu problem for a third order system of hyperbolic equations, Libertas Math. 21 (2001), 27-33. (2001) Zbl0994.35080MR1867764
  6. Huang, J., Li, Y., 10.1002/mana.201400298, Math. Nachr. 289 (2016), 60-66. (2016) Zbl1339.34082MR3449100DOI10.1002/mana.201400298
  7. Jonesco, D. V., 10.5802/afst.343, Annales Toulouse (3) 19 (1927), 39-92 French 9999JFM99999 53.0477.03. (1927) MR1508394DOI10.5802/afst.343
  8. Jung, S.-M., 10.1016/j.aml.2003.11.004, Appl. Math. Lett. 17 (2004), 1135-1140. (2004) Zbl1061.34039MR2091847DOI10.1016/j.aml.2003.11.004
  9. Jung, S.-M., 10.1155/2007/57064, Fixed Point Theory Appl. 2007 (2007), Article ID 57064, 9 pages. (2007) Zbl1155.45005MR2318689DOI10.1155/2007/57064
  10. Jung, S.-M., 10.1016/j.aml.2008.02.006, Appl. Math. Lett. 22 (2009), 70-74. (2009) Zbl1163.39308MR2484284DOI10.1016/j.aml.2008.02.006
  11. Jung, S.-M., 10.1007/978-1-4419-9637-4, Springer Optimization and Its Applications 48. Springer, New York (2011). (2011) Zbl1221.39038MR2790773DOI10.1007/978-1-4419-9637-4
  12. Kwapisz, M., Turo, J., 10.4064/cm-29-2-279-302, Colloq. Math. 29 (1974), 279-302. (1974) Zbl0284.35036MR0364918DOI10.4064/cm-29-2-279-302
  13. Lakshmikantham, V., Leela, S., Martynyuk, A. A., 10.1007/978-3-319-27200-9, Pure and Applied Mathematics 125. Marcel Dekker, New York (1989). (1989) Zbl0676.34003MR0984861DOI10.1007/978-3-319-27200-9
  14. Lungu, N., Popa, D., 10.1016/j.jmaa.2011.06.025, J. Math. Anal. Appl. 385 (2012), 86-91. (2012) Zbl1236.39030MR2832076DOI10.1016/j.jmaa.2011.06.025
  15. Lungu, N., Popa, D., 10.37193/CJM.2014.03.11, Carpatian J. Math. 30 (2014), 327-334. (2014) Zbl1349.35035MR3362855DOI10.37193/CJM.2014.03.11
  16. Lungu, N., Rus, I. A., Ulam stability of nonlinear hyperbolic partial differential equations, Carpatian J. Math. 24 (2008), 403-408. (2008) Zbl1249.35219
  17. Marian, D., Ciplea, S. A., Lungu, N., 10.37193/CJM.2021.02.07, Carpatian J. Math. 37 (2021), 211-216. (2021) Zbl07445719MR4264071DOI10.37193/CJM.2021.02.07
  18. Otrocol, D., llea, V., 10.2478/s11533-013-0233-9, Cent. Eur. J. Math. 11 (2013), 1296-1303. (2013) Zbl1275.34098MR3047057DOI10.2478/s11533-013-0233-9
  19. Popa, D., Raşa, I., 10.1016/j.jmaa.2011.02.051, J. Math. Anal. Appl. 381 (2011), 530-537. (2011) Zbl1222.34069MR2802090DOI10.1016/j.jmaa.2011.02.051
  20. Popa, D., Raşa, I., 10.1016/j.amc.2012.07.056, Appl. Math. Comput. 219 (2012), 1562-1568. (2012) Zbl1368.34075MR2983863DOI10.1016/j.amc.2012.07.056
  21. Rus, I. A., On a problem of Darboux-Ionescu, Stud. Univ. Babeş-Bolyai Math. 26 (1981), 43-45. (1981) Zbl0534.35018MR0653967
  22. Rus, I. A., Picard operators and applications, Sci. Math. Jpn. 58 (2003), 191-219. (2003) Zbl1031.47035MR1987831
  23. Rus, I. A., Fixed points, upper and lower fixed points: Abstract Gronwall lemmas, Carpathian J. Math. 20 (2004), 125-134. (2004) Zbl1113.54304MR2138535
  24. Rus, I. A., Ulam stability of ordinary differential equations, Stud. Univ. Babeş-Bolyai Math. 54 (2009), 125-133. (2009) Zbl1224.34165MR2602351
  25. Teodoru, G., The data dependence for the solutions of Darboux-Ionescu problem for a hyperbolic inclusion of third order, Fixed Point Theory 7 (2006), 127-146. (2006) Zbl1113.35116MR2242321
  26. Zada, A., Ali, W., Park, C., 10.1016/j.amc.2019.01.014, Appl. Math. Comput. 350 (2019), 60-65. (2019) Zbl1428.34087MR3899985DOI10.1016/j.amc.2019.01.014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.