Strong convergence for weighted sums of WOD random variables and its application in the EV regression model

Liwang Ding; Caoqing Jiang

Applications of Mathematics (2024)

  • Volume: 69, Issue: 1, page 93-111
  • ISSN: 0862-7940

Abstract

top
The strong convergence for weighted sums of widely orthant dependent (WOD) random variables is investigated. As an application, we further investigate the strong consistency of the least squares estimator in EV regression model for WOD random variables. A simulation study is carried out to confirm the theoretical results.

How to cite

top

Ding, Liwang, and Jiang, Caoqing. "Strong convergence for weighted sums of WOD random variables and its application in the EV regression model." Applications of Mathematics 69.1 (2024): 93-111. <http://eudml.org/doc/299201>.

@article{Ding2024,
abstract = {The strong convergence for weighted sums of widely orthant dependent (WOD) random variables is investigated. As an application, we further investigate the strong consistency of the least squares estimator in EV regression model for WOD random variables. A simulation study is carried out to confirm the theoretical results.},
author = {Ding, Liwang, Jiang, Caoqing},
journal = {Applications of Mathematics},
keywords = {errors-in-variables regression model; least squares estimator; widely orthant dependent; strong consistency},
language = {eng},
number = {1},
pages = {93-111},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong convergence for weighted sums of WOD random variables and its application in the EV regression model},
url = {http://eudml.org/doc/299201},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Ding, Liwang
AU - Jiang, Caoqing
TI - Strong convergence for weighted sums of WOD random variables and its application in the EV regression model
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 93
EP - 111
AB - The strong convergence for weighted sums of widely orthant dependent (WOD) random variables is investigated. As an application, we further investigate the strong consistency of the least squares estimator in EV regression model for WOD random variables. A simulation study is carried out to confirm the theoretical results.
LA - eng
KW - errors-in-variables regression model; least squares estimator; widely orthant dependent; strong consistency
UR - http://eudml.org/doc/299201
ER -

References

top
  1. Allen, R. G. D., 10.2307/2548931, Economica 6 (1939), 191-201. (1939) DOI10.2307/2548931
  2. Carroll, R. J., Ruppert, D., Stefanski, L. A., 10.1201/9781420010138, Monographs on Statistics and Applied Probability 63. Chapman & Hall, London (1995). (1995) Zbl0853.62048MR1630517DOI10.1201/9781420010138
  3. Chen, P., Wen, L., Sung, S. H., 10.1016/j.jspi.2019.06.004, J. Stat. Plann. Inference 205 (2020), 64-73. (2020) Zbl1437.62103MR4011623DOI10.1016/j.jspi.2019.06.004
  4. Chen, W., Wang, Y., Cheng, D., 10.1007/s10986-016-9301-8, Lith. Math. J. 56 (2016), 16-31. (2016) Zbl1385.60040MR3472103DOI10.1007/s10986-016-9301-8
  5. Choi, B. D., Sung, S. H., 10.1080/07362998708809124, Stochastic Anal. Appl. 5 (1987), 365-377. (1987) Zbl0633.60049MR0912863DOI10.1080/07362998708809124
  6. Cui, H., Asymptotic normality of M -estimates in the EV model, Syst. Sci. Math. Sci. 10 (1997), 225-236. (1997) Zbl0905.62072MR1469182
  7. Deaton, A., 10.1016/0304-4076(85)90134-4, J. Econom. 30 (1985), 109-126. (1985) Zbl0584.62193DOI10.1016/0304-4076(85)90134-4
  8. Deng, X., Tang, X.-F., Wang, S.-J., Wang, X.-J., 10.1007/s11766-018-3423-1, Appl. Math., Ser. B (Engl. Ed.) 33 (2018), 35-47. (2018) Zbl1399.60082MR3779102DOI10.1007/s11766-018-3423-1
  9. Fazekas, I., Kukush, A. G., 10.1016/S0898-1221(97)00204-6, Comput. Math. Appl. 34 (1997), 23-39. (1997) Zbl0911.62054MR1487730DOI10.1016/S0898-1221(97)00204-6
  10. Fuller, W. A., 10.1002/9780470316665, Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1987). (1987) Zbl0800.62413MR0898653DOI10.1002/9780470316665
  11. Hu, T., Negatively superadditive dependence of random variables with applications, Chin. J. Appl. Probab. Stat. 16 (2000), 133-144. (2000) Zbl1050.60502MR1812714
  12. Joag-Dev, K., Proschan, F., 10.1214/aos/1176346079, Ann. Stat. 11 (1983), 286-295. (1983) Zbl0508.62041MR0684886DOI10.1214/aos/1176346079
  13. Miao, Y., Yang, G., Shen, L., 10.1080/03610920701215266, Commun. Stat., Theory Methods 36 (2007), 2263-2272. (2007) Zbl1183.62039MR2396557DOI10.1080/03610920701215266
  14. Miao, Y., Zhao, F., Wang, K., Chen, Y., 10.1007/s00362-011-0418-x, Stat. Pap. 54 (2013), 193-206. (2013) Zbl1256.62013MR3016962DOI10.1007/s00362-011-0418-x
  15. Shen, A., 10.1155/2013/862602, Abstr. Appl. Anal. 2013 (2013), Article ID 862602, 9 pages. (2013) Zbl1470.62056MR3081600DOI10.1155/2013/862602
  16. Shen, A., Yao, M., Wang, W., Volodin, A., 10.1007/s13398-015-0233-7, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 110 (2016), 251-268. (2016) Zbl1334.60040MR3462086DOI10.1007/s13398-015-0233-7
  17. Sung, S. H., Almost sure convergence for weighted sums of i.i.d. random variables. II, Bull. Korean Math. Soc. 33 (1996), 419-425. (1996) Zbl0865.60021MR1419389
  18. Teicher, H., 10.1007/BF00532738, Z. Wahrscheinlichkeitstheor. Verw. Geb. 69 (1985), 331-345. (1985) Zbl0548.60028MR0787602DOI10.1007/BF00532738
  19. Wang, K., Wang, Y., Gao, Q., 10.1007/s11009-011-9226-y, Methodol. Comput. Appl. Probab. 15 (2013), 109-124. (2013) Zbl1263.91027MR3030214DOI10.1007/s11009-011-9226-y
  20. Wang, X., Wu, Y., Hu, S., 10.1007/s10182-016-0286-8, AStA, Adv. Stat. Anal. 102 (2018), 41-65. (2018) Zbl1421.62023MR3749656DOI10.1007/s10182-016-0286-8
  21. Wang, X., Xu, C., Hu, T.-C., Volodin, A., Hu, S., 10.1007/s11749-014-0365-7, TEST 23 (2014), 607-629. (2014) Zbl1307.60024MR3252097DOI10.1007/s11749-014-0365-7
  22. Wang, Y., Cheng, D., 10.1016/j.jmaa.2011.06.010, J. Math. Anal. Appl. 384 (2011), 597-606. (2011) Zbl1230.60095MR2825210DOI10.1016/j.jmaa.2011.06.010
  23. Wang, Y., Cui, Z., Wang, K., Ma, X., 10.1016/j.jmaa.2012.01.025, J. Math. Anal. Appl. 390 (2012), 208-223. (2012) Zbl1237.91139MR2885767DOI10.1016/j.jmaa.2012.01.025
  24. Wang, Y., Wang, X., 10.1007/s00362-019-01112-z, Stat. Pap. 62 (2021), 769-793. (2021) Zbl1482.60049MR4232917DOI10.1007/s00362-019-01112-z
  25. Wu, Q. Y., Probability Limit Theory for Mixing Sequences, Science Press of China, Beijing (2006). (2006) 
  26. Xi, M., Wang, R., Cheng, Z., Wang, X., 10.1007/s00362-018-0996-y, Stat. Pap. 61 (2020), 1663-1684. (2020) Zbl1453.60081MR4127491DOI10.1007/s00362-018-0996-y
  27. Xu, S., Miao, Y., 10.1080/03610926.2013.841921, Commun. Stat., Theory Methods 43 (2014), 2581-2594. (2014) Zbl1316.60043MR3217835DOI10.1080/03610926.2013.841921
  28. Yi, Y., Chen, P., Sung, S. H., 10.1186/s13660-020-02311-1, J. Inequal. Appl. 2020 (2020), Article ID 43, 8 pages. (2020) Zbl1503.60040MR4066646DOI10.1186/s13660-020-02311-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.