On generalizations of fuzzy metric spaces

Yi Shi; Wei Yao

Kybernetika (2023)

  • Volume: 59, Issue: 6, page 880-903
  • ISSN: 0023-5954

Abstract

top
The aim of the paper is to present three-variable generalizations of fuzzy metric spaces in sense of George and Veeramani from functional and topological points of view, respectively. From the viewpoint of functional generalization, we introduce a notion of generalized fuzzy 2-metric spaces, study their topological properties, and point out that it is also a common generalization of both tripled fuzzy metric spaces proposed by Tian et al. and -fuzzy metric spaces proposed by Sedghi and Shobe. Since the ordinary tripled norm is the same as the ordinary norm up to the induced topology, we keep our spirit on fuzzy normed structures and introduce a concept of generalized fuzzy 2-normed spaces from the viewpoint of topological generalization. It is proved that generalized fuzzy 2-normed spaces always induces a Hausdorff topology.

How to cite

top

Shi, Yi, and Yao, Wei. "On generalizations of fuzzy metric spaces." Kybernetika 59.6 (2023): 880-903. <http://eudml.org/doc/299209>.

@article{Shi2023,
abstract = {The aim of the paper is to present three-variable generalizations of fuzzy metric spaces in sense of George and Veeramani from functional and topological points of view, respectively. From the viewpoint of functional generalization, we introduce a notion of generalized fuzzy 2-metric spaces, study their topological properties, and point out that it is also a common generalization of both tripled fuzzy metric spaces proposed by Tian et al. and $\mathcal \{M\}$-fuzzy metric spaces proposed by Sedghi and Shobe. Since the ordinary tripled norm is the same as the ordinary norm up to the induced topology, we keep our spirit on fuzzy normed structures and introduce a concept of generalized fuzzy 2-normed spaces from the viewpoint of topological generalization. It is proved that generalized fuzzy 2-normed spaces always induces a Hausdorff topology.},
author = {Shi, Yi, Yao, Wei},
journal = {Kybernetika},
keywords = {generalized fuzzy 2-metric space; generalized fuzzy $2$-normed space; tripled fuzzy metric space; Hausdorff topology},
language = {eng},
number = {6},
pages = {880-903},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On generalizations of fuzzy metric spaces},
url = {http://eudml.org/doc/299209},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Shi, Yi
AU - Yao, Wei
TI - On generalizations of fuzzy metric spaces
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 6
SP - 880
EP - 903
AB - The aim of the paper is to present three-variable generalizations of fuzzy metric spaces in sense of George and Veeramani from functional and topological points of view, respectively. From the viewpoint of functional generalization, we introduce a notion of generalized fuzzy 2-metric spaces, study their topological properties, and point out that it is also a common generalization of both tripled fuzzy metric spaces proposed by Tian et al. and $\mathcal {M}$-fuzzy metric spaces proposed by Sedghi and Shobe. Since the ordinary tripled norm is the same as the ordinary norm up to the induced topology, we keep our spirit on fuzzy normed structures and introduce a concept of generalized fuzzy 2-normed spaces from the viewpoint of topological generalization. It is proved that generalized fuzzy 2-normed spaces always induces a Hausdorff topology.
LA - eng
KW - generalized fuzzy 2-metric space; generalized fuzzy $2$-normed space; tripled fuzzy metric space; Hausdorff topology
UR - http://eudml.org/doc/299209
ER -

References

top
  1. Abrishami-Moghaddam, M., Sistani, T., , Afr. Mat. 25 (2014), 539-548. MR3248599DOI
  2. Alegre, C., Romaguera, S., , Fuzzy Sets Syst. 161 (2010), 2181-2192. MR2652719DOI
  3. Bag, T., Samanta, S. K., Finite dimensional fuzzy normed linear spaces., J. Fuzzy Math. 11 (2003), 687-705. MR2005663
  4. Chaipunya, P., Kumam, P., , J. Funct. Spaces 2013 (2013), 194631. MR3132673DOI
  5. Cheng, S. C., Mordeson, J. N., Fuzzy linear operator and fuzzy normed linear spaces., Bull. Cal. Math. Soc. 86 (1994), 429-436. MR1351812
  6. Došenović, T., Rakić, D., Radenović, S., Carić, B., , AIMS Math.8 (2023), 2154-2167. MR4501175DOI
  7. George, A., Veeramani, P., , Fuzzy Sets Syst. 64 (1994), 395-399. Zbl0843.54014MR1289545DOI
  8. George, A., Veeramani, P., , Fuzzy Sets Syst. 90 (1997), 365-368. Zbl0917.54010MR1477836DOI
  9. Goleţ, I., , Southeast Asian Bull. Math. 31 (2007), 1-10. MR2317398DOI
  10. Gregori, V., López-Crevillén, A., Morillas, S., Sapena, A., , Topology Appl. 156 (2009), 3002-3006. MR2556057DOI
  11. Gregori, V., Miñana, J. J., , Fuzzy Sets Syst. 300 (2016), 245-252. MR3523453DOI
  12. Gregori, V., Miñana, J. J., Morillas, S., Sapena, A., , Topology Appl. 203 (2016), 3-11. MR3481066DOI
  13. Gregori, V., Miñana, J. J., Morillas, S., Miravet, D., 10.1080/03081079.2018.1552687, Int. J. Gen. Syst. 48 (2019), 260-279. MR3904572DOI10.1080/03081079.2018.1552687
  14. Gregori, V., Morillas, S., Sapena, A., , Fuzzy Sets Syst. 170 (2011), 95-111. Zbl1210.94016MR2775611DOI
  15. Gregori, V., Morillas, S., Sapena, A., , Fuzzy Sets Syst. 161 (2010), 2193-2205. Zbl1201.54011MR2652720DOI
  16. García, J. Gutiérrez, Romaguera, S., , Fuzzy Sets Syst. 162 (2011), 91-93. MR2734890DOI
  17. Ha, K. S., Cho, Y. J., White, A., , Math. Jpn. 33 (1988), 3, 375-384. MR0956851DOI
  18. Khan, K. A., , J. Math. Comput. Sci. 13 (2014), 157-167. MR3293890DOI
  19. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
  20. Kramosil, I., Michálek, J., , Kybernetica 11 (1975), 326-334. MR0410633DOI
  21. Kundu, A., Bag, T., Nazmul, Sk., , Topol. Appl. 256 (2019), 159-176. MR3910824DOI
  22. Meenakshi, A. R., Cokilavany, R., On fuzzy 2 -normed linear spaces., J. Fuzzy Math. 9 (2001), 345-351. MR1839977
  23. Menger, K., , Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. Zbl0063.03886MR0007576DOI
  24. Merghadi, F., Aliouche, A., A related fixed point theorem in n fuzzy metric spaces., Iran. J. Fuzzy Syst. 7 (2010) 73-86. MR2722021
  25. Mihet, D., , Fuzzy Sets Syst. 159 (2008), 739-744. MR2410532DOI
  26. Mohiuddine, S. A., , Math. Comput. Modelling 53 (2011), 574-580. MR2769428DOI
  27. Mohiuddine, S. A., Sevli, H., Cancan, M., Statistical convergence in fuzzy 2-normed space., J. Comput. Anal. Appl. 12 (2010), 787-798. MR2649299
  28. Mustafa, Z., Sims, B., A new approach to generalized metric spaces., J. Nonlinear Convex Anal. 7 (2006), 2, 289-297. MR2254125
  29. Patel, U. D., Radenovic, S., , Mathematics 10 (16) (2022), 2831. DOI
  30. Saadati, R., Vaezpour, S. M., , J. Appl. Math. Comput. 17 (2005), 475-484. MR2108820DOI
  31. Sapena, A., Morillas, S., , In: Proc. Workshop in Applied Topology WiAT09: Applied Topology: Recent progress for Computer Science, Fuzzy Math. Econom. 2009, pp. 135-141. DOI
  32. Sedghi, S., Shobe, N., Fixed point theorem in -fuzzy metric spaces with property (E)., Adv. Fuzzy Math. 1 (2006), 55-65. MR2386818
  33. Sedghi, S., Shobe, N., Aliouche, A., A generalization of fixed point theorems in S -metric spaces., Mat. Vesn. 64 (2012), 258-266. MR2911870
  34. Sedghi, S., Shobe, N., Zhou, H., , Fixed Point Theory Appl. (2007), Article ID 27906, 13 pages. MR2369244DOI
  35. Sharma, A. K., A note on fixed-points in 2 -metric spaces., Indian J. Pure Appl. Math. 11 (1980),12, 1580-1583. MR0617834
  36. Sharma, S., Sharma, S., Common fixed point theorem in fuzzy 2 -metric space., Acta Cienc. Indica Math. 23 (1997), 1-4. MR1710865
  37. Tian, J.-F., Ha, M.-H., Tian, D.-Z., , Inform. Sci. 518 (2020), 113-126. MR4053026DOI
  38. Vijayabalaji, S., Thillaigovindan, N., Fuzzy semi n -metric space., Bull. Pure Appl. Sci. Sect. E Math. Stat. 28 (2009), 283-293. MR2827717
  39. Xiao, J.-Z, Zhu, X.-H., Zhou, H., , IEEE Trans. Fuzzy Syst. 28 (2020), 1575-1584. DOI
  40. Yan, C. H., , Int. J. Gen. Syst. 51 (2022), 648-662. MR4452968DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.