On generalizations of fuzzy metric spaces
Kybernetika (2023)
- Volume: 59, Issue: 6, page 880-903
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topShi, Yi, and Yao, Wei. "On generalizations of fuzzy metric spaces." Kybernetika 59.6 (2023): 880-903. <http://eudml.org/doc/299209>.
@article{Shi2023,
abstract = {The aim of the paper is to present three-variable generalizations of fuzzy metric spaces in sense of George and Veeramani from functional and topological points of view, respectively. From the viewpoint of functional generalization, we introduce a notion of generalized fuzzy 2-metric spaces, study their topological properties, and point out that it is also a common generalization of both tripled fuzzy metric spaces proposed by Tian et al. and $\mathcal \{M\}$-fuzzy metric spaces proposed by Sedghi and Shobe. Since the ordinary tripled norm is the same as the ordinary norm up to the induced topology, we keep our spirit on fuzzy normed structures and introduce a concept of generalized fuzzy 2-normed spaces from the viewpoint of topological generalization. It is proved that generalized fuzzy 2-normed spaces always induces a Hausdorff topology.},
author = {Shi, Yi, Yao, Wei},
journal = {Kybernetika},
keywords = {generalized fuzzy 2-metric space; generalized fuzzy $2$-normed space; tripled fuzzy metric space; Hausdorff topology},
language = {eng},
number = {6},
pages = {880-903},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On generalizations of fuzzy metric spaces},
url = {http://eudml.org/doc/299209},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Shi, Yi
AU - Yao, Wei
TI - On generalizations of fuzzy metric spaces
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 6
SP - 880
EP - 903
AB - The aim of the paper is to present three-variable generalizations of fuzzy metric spaces in sense of George and Veeramani from functional and topological points of view, respectively. From the viewpoint of functional generalization, we introduce a notion of generalized fuzzy 2-metric spaces, study their topological properties, and point out that it is also a common generalization of both tripled fuzzy metric spaces proposed by Tian et al. and $\mathcal {M}$-fuzzy metric spaces proposed by Sedghi and Shobe. Since the ordinary tripled norm is the same as the ordinary norm up to the induced topology, we keep our spirit on fuzzy normed structures and introduce a concept of generalized fuzzy 2-normed spaces from the viewpoint of topological generalization. It is proved that generalized fuzzy 2-normed spaces always induces a Hausdorff topology.
LA - eng
KW - generalized fuzzy 2-metric space; generalized fuzzy $2$-normed space; tripled fuzzy metric space; Hausdorff topology
UR - http://eudml.org/doc/299209
ER -
References
top- Abrishami-Moghaddam, M., Sistani, T., , Afr. Mat. 25 (2014), 539-548. MR3248599DOI
- Alegre, C., Romaguera, S., , Fuzzy Sets Syst. 161 (2010), 2181-2192. MR2652719DOI
- Bag, T., Samanta, S. K., Finite dimensional fuzzy normed linear spaces., J. Fuzzy Math. 11 (2003), 687-705. MR2005663
- Chaipunya, P., Kumam, P., , J. Funct. Spaces 2013 (2013), 194631. MR3132673DOI
- Cheng, S. C., Mordeson, J. N., Fuzzy linear operator and fuzzy normed linear spaces., Bull. Cal. Math. Soc. 86 (1994), 429-436. MR1351812
- Došenović, T., Rakić, D., Radenović, S., Carić, B., , AIMS Math.8 (2023), 2154-2167. MR4501175DOI
- George, A., Veeramani, P., , Fuzzy Sets Syst. 64 (1994), 395-399. Zbl0843.54014MR1289545DOI
- George, A., Veeramani, P., , Fuzzy Sets Syst. 90 (1997), 365-368. Zbl0917.54010MR1477836DOI
- Goleţ, I., , Southeast Asian Bull. Math. 31 (2007), 1-10. MR2317398DOI
- Gregori, V., López-Crevillén, A., Morillas, S., Sapena, A., , Topology Appl. 156 (2009), 3002-3006. MR2556057DOI
- Gregori, V., Miñana, J. J., , Fuzzy Sets Syst. 300 (2016), 245-252. MR3523453DOI
- Gregori, V., Miñana, J. J., Morillas, S., Sapena, A., , Topology Appl. 203 (2016), 3-11. MR3481066DOI
- Gregori, V., Miñana, J. J., Morillas, S., Miravet, D., 10.1080/03081079.2018.1552687, Int. J. Gen. Syst. 48 (2019), 260-279. MR3904572DOI10.1080/03081079.2018.1552687
- Gregori, V., Morillas, S., Sapena, A., , Fuzzy Sets Syst. 170 (2011), 95-111. Zbl1210.94016MR2775611DOI
- Gregori, V., Morillas, S., Sapena, A., , Fuzzy Sets Syst. 161 (2010), 2193-2205. Zbl1201.54011MR2652720DOI
- García, J. Gutiérrez, Romaguera, S., , Fuzzy Sets Syst. 162 (2011), 91-93. MR2734890DOI
- Ha, K. S., Cho, Y. J., White, A., , Math. Jpn. 33 (1988), 3, 375-384. MR0956851DOI
- Khan, K. A., , J. Math. Comput. Sci. 13 (2014), 157-167. MR3293890DOI
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
- Kramosil, I., Michálek, J., , Kybernetica 11 (1975), 326-334. MR0410633DOI
- Kundu, A., Bag, T., Nazmul, Sk., , Topol. Appl. 256 (2019), 159-176. MR3910824DOI
- Meenakshi, A. R., Cokilavany, R., On fuzzy -normed linear spaces., J. Fuzzy Math. 9 (2001), 345-351. MR1839977
- Menger, K., , Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. Zbl0063.03886MR0007576DOI
- Merghadi, F., Aliouche, A., A related fixed point theorem in fuzzy metric spaces., Iran. J. Fuzzy Syst. 7 (2010) 73-86. MR2722021
- Mihet, D., , Fuzzy Sets Syst. 159 (2008), 739-744. MR2410532DOI
- Mohiuddine, S. A., , Math. Comput. Modelling 53 (2011), 574-580. MR2769428DOI
- Mohiuddine, S. A., Sevli, H., Cancan, M., Statistical convergence in fuzzy 2-normed space., J. Comput. Anal. Appl. 12 (2010), 787-798. MR2649299
- Mustafa, Z., Sims, B., A new approach to generalized metric spaces., J. Nonlinear Convex Anal. 7 (2006), 2, 289-297. MR2254125
- Patel, U. D., Radenovic, S., , Mathematics 10 (16) (2022), 2831. DOI
- Saadati, R., Vaezpour, S. M., , J. Appl. Math. Comput. 17 (2005), 475-484. MR2108820DOI
- Sapena, A., Morillas, S., , In: Proc. Workshop in Applied Topology WiAT09: Applied Topology: Recent progress for Computer Science, Fuzzy Math. Econom. 2009, pp. 135-141. DOI
- Sedghi, S., Shobe, N., Fixed point theorem in -fuzzy metric spaces with property (E)., Adv. Fuzzy Math. 1 (2006), 55-65. MR2386818
- Sedghi, S., Shobe, N., Aliouche, A., A generalization of fixed point theorems in -metric spaces., Mat. Vesn. 64 (2012), 258-266. MR2911870
- Sedghi, S., Shobe, N., Zhou, H., , Fixed Point Theory Appl. (2007), Article ID 27906, 13 pages. MR2369244DOI
- Sharma, A. K., A note on fixed-points in -metric spaces., Indian J. Pure Appl. Math. 11 (1980),12, 1580-1583. MR0617834
- Sharma, S., Sharma, S., Common fixed point theorem in fuzzy -metric space., Acta Cienc. Indica Math. 23 (1997), 1-4. MR1710865
- Tian, J.-F., Ha, M.-H., Tian, D.-Z., , Inform. Sci. 518 (2020), 113-126. MR4053026DOI
- Vijayabalaji, S., Thillaigovindan, N., Fuzzy semi -metric space., Bull. Pure Appl. Sci. Sect. E Math. Stat. 28 (2009), 283-293. MR2827717
- Xiao, J.-Z, Zhu, X.-H., Zhou, H., , IEEE Trans. Fuzzy Syst. 28 (2020), 1575-1584. DOI
- Yan, C. H., , Int. J. Gen. Syst. 51 (2022), 648-662. MR4452968DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.