Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system
Yanjiang Li; Zhongqing Yu; Yumei Huang
Czechoslovak Mathematical Journal (2024)
- Issue: 1, page 153-175
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Yanjiang, Yu, Zhongqing, and Huang, Yumei. "Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system." Czechoslovak Mathematical Journal (2024): 153-175. <http://eudml.org/doc/299213>.
@article{Li2024,
abstract = {The self-consistent chemotaxis-fluid system \[ \{\left\lbrace \begin\{array\}\{ll\} n\_t+u\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla c )+\nabla \cdot (n\nabla \phi ), &x\in \Omega ,\ t>0,\\ c\_t +u\cdot \nabla c=\Delta c -nc,\quad &x\in \Omega ,\ t>0,\\ u\_t+\kappa (u\cdot \nabla ) u+\nabla P=\Delta u - n\nabla \phi +n \nabla c,\qquad &x\in \Omega ,\ t>0,\\ \nabla \cdot u=0,\quad &x\in \Omega ,\ t>0, \end\{array\}\right.\} \]
is considered under no-flux boundary conditions for $n, c$ and the Dirichlet boundary condition for $u$ on a bounded smooth domain $ \Omega \subset \mathbb \{R\}^N$$(N=2,3)$, $\kappa \in \lbrace 0,1 \rbrace $. The existence of global bounded classical solutions is proved under a smallness assumption on $\Vert c_\{0\}\Vert _\{L^\{\infty \}(\Omega )\}$. Both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered here, and thus the coupling is stronger than the most studied chemotaxis-fluid systems. The literature on self-consistent chemotaxis-fluid systems of this type so far concentrates on the nonlinear cell diffusion as an additional dissipative mechanism. To the best of our knowledge, this is the first result on the boundedness of a self-consistent chemotaxis-fluid system with linear cell diffusion.},
author = {Li, Yanjiang, Yu, Zhongqing, Huang, Yumei},
journal = {Czechoslovak Mathematical Journal},
keywords = {chemotaxis; Navier-Stokes system; self-consistent; global existence; boundedness},
language = {eng},
number = {1},
pages = {153-175},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system},
url = {http://eudml.org/doc/299213},
year = {2024},
}
TY - JOUR
AU - Li, Yanjiang
AU - Yu, Zhongqing
AU - Huang, Yumei
TI - Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 153
EP - 175
AB - The self-consistent chemotaxis-fluid system \[ {\left\lbrace \begin{array}{ll} n_t+u\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla c )+\nabla \cdot (n\nabla \phi ), &x\in \Omega ,\ t>0,\\ c_t +u\cdot \nabla c=\Delta c -nc,\quad &x\in \Omega ,\ t>0,\\ u_t+\kappa (u\cdot \nabla ) u+\nabla P=\Delta u - n\nabla \phi +n \nabla c,\qquad &x\in \Omega ,\ t>0,\\ \nabla \cdot u=0,\quad &x\in \Omega ,\ t>0, \end{array}\right.} \]
is considered under no-flux boundary conditions for $n, c$ and the Dirichlet boundary condition for $u$ on a bounded smooth domain $ \Omega \subset \mathbb {R}^N$$(N=2,3)$, $\kappa \in \lbrace 0,1 \rbrace $. The existence of global bounded classical solutions is proved under a smallness assumption on $\Vert c_{0}\Vert _{L^{\infty }(\Omega )}$. Both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered here, and thus the coupling is stronger than the most studied chemotaxis-fluid systems. The literature on self-consistent chemotaxis-fluid systems of this type so far concentrates on the nonlinear cell diffusion as an additional dissipative mechanism. To the best of our knowledge, this is the first result on the boundedness of a self-consistent chemotaxis-fluid system with linear cell diffusion.
LA - eng
KW - chemotaxis; Navier-Stokes system; self-consistent; global existence; boundedness
UR - http://eudml.org/doc/299213
ER -
References
top- Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M., 10.1142/S021820251550044X, Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. (2015) Zbl1326.35397MR3351175DOI10.1142/S021820251550044X
- Bellomo, N., Outada, N., Soler, J., Tao, Y., Winkler, M., 10.1142/S0218202522500166, Math. Models Methods Appl. Sci. 32 (2022), 713-792. (2022) Zbl1497.35039MR4421216DOI10.1142/S0218202522500166
- Cao, X., 10.1016/j.jde.2016.09.007, J. Differ. Equations 261 (2016), 6883-6914. (2016) Zbl1352.35092MR3562314DOI10.1016/j.jde.2016.09.007
- Carrillo, J. A., Peng, Y., Xiang, Z., Global existence and decay rates to self-consistent chemotaxis-fluid system, Available at https://arxiv.org/abs/2302.03274 (2023), 36 pages. (2023) MR4671518
- Chae, M., Kang, K., Lee, J., 10.3934/dcds.2013.33.2271, Discrete Contin. Dyn. Syst. 33 (2013), 2271-2297. (2013) Zbl1277.35276MR3007686DOI10.3934/dcds.2013.33.2271
- Chae, M., Kang, K., Lee, J., 10.1080/03605302.2013.852224, Commun. Partial Differ. Equations 39 (2014), 1205-1235. (2014) Zbl1304.35481MR3208807DOI10.1080/03605302.2013.852224
- Francesco, M. Di, Lorz, A., Markowich, P. A., 10.3934/dcds.2010.28.1437, Discrete Contin. Dyn. Syst. 28 (2010), 1437-1453. (2010) Zbl1276.35103MR2679718DOI10.3934/dcds.2010.28.1437
- Duan, R., Li, X., Xiang, Z., 10.1016/j.jde.2017.07.015, J. Differ. Equations 263 (2017), 6284-6316. (2017) Zbl1378.35160MR3693175DOI10.1016/j.jde.2017.07.015
- Duan, R., Lorz, A., Markowich, P. A., 10.1080/03605302.2010.497199, Commun. Partial Differ. Equations 35 (2010), 1635-1673. (2010) Zbl1275.35005MR2754058DOI10.1080/03605302.2010.497199
- Galdi, G. P., 10.1007/978-1-4757-3866-7, Springer Tracts in Natural Philosophy 38. Springer, Berlin (1994). (1994) Zbl0949.35004MR1284205DOI10.1007/978-1-4757-3866-7
- He, P., Wang, Y., Zhao, L., 10.1016/j.aml.2018.09.019, Appl. Math. Lett. 90 (2019), 23-29. (2019) Zbl1410.35249MR3875493DOI10.1016/j.aml.2018.09.019
- Horstmann, D., From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. (2003) Zbl1071.35001MR2013508
- Ishida, S., 10.3934/dcds.2015.35.3463, Discrete Contin. Dyn. Syst. 35 (2015), 3463-3482. (2015) Zbl1308.35214MR3320134DOI10.3934/dcds.2015.35.3463
- Jin, C., Global bounded solution in three-dimensional chemotaxis-Stokes model with arbitrary porous medium slow diffusion, Available at https://arxiv.org/abs/2101.11235 (2021), 24 pages. (2021)
- Jin, C., Wang, Y., Yin, J., Global solvability and stability to a nutrient-taxis model with porous medium slow diffusion, Available at https://arxiv.org/abs/1804.03964 (2018), 35 pages. (2018) MR4635735
- Keller, E. F., Segel, L. A., 10.1016/0022-5193(70)90092-5, J. Theor. Biol. 26 (1970), 399-415. (1970) Zbl1170.92306MR3925816DOI10.1016/0022-5193(70)90092-5
- Kozono, H., Yanagisawa, T., 10.1007/s00209-008-0361-2, Math. Z. 262 (2009), 27-39. (2009) Zbl1169.35045MR2491599DOI10.1007/s00209-008-0361-2
- Li, X., Wang, Y., Xiang, Z., 10.4310/CMS.2016.v14.n7.a5, Commun. Math. Sci. 14 (2016), 1889-1910. (2016) Zbl1351.35073MR3549354DOI10.4310/CMS.2016.v14.n7.a5
- Liu, J.-G., Lorz, A., 10.1016/J.ANIHPC.2011.04.005, Ann. Inst. H. Poincaré, Anal. Non Linéaire 28 (2011), 643-652. (2011) Zbl1236.92013MR2838394DOI10.1016/J.ANIHPC.2011.04.005
- Lorz, A., 10.1142/S0218202510004507, Math. Models Methods Appl. Sci. 20 (2010), 987-1004. (2010) Zbl1191.92004MR2659745DOI10.1142/S0218202510004507
- Patlak, C. S., 10.1007/BF02476407, Bull. Math. Biophys. 15 (1953), 311-338. (1953) Zbl1296.82044MR0081586DOI10.1007/BF02476407
- Peng, Y., Xiang, Z., 10.1007/s00033-017-0816-6, Z. Angew. Math. Phys. 68 (2017), Article ID 68, 26 pages. (2017) Zbl1386.35189MR3654908DOI10.1007/s00033-017-0816-6
- Tan, Z., Zhang, X., 10.1016/j.jmaa.2013.08.008, J. Math. Anal. Appl. 410 (2014), 27-38. (2014) Zbl1333.92015MR3109817DOI10.1016/j.jmaa.2013.08.008
- Tao, Y., 10.1016/j.jmaa.2011.02.041, J. Math. Anal. Appl. 381 (2011), 521-529. (2011) Zbl1225.35118MR2802089DOI10.1016/j.jmaa.2011.02.041
- Tao, Y., Winkler, M., 10.3934/dcds.2012.32.1901, Discrete Contin. Dyn. Syst. 32 (2012), 1901-1914. (2012) Zbl1276.35105MR2871341DOI10.3934/dcds.2012.32.1901
- Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C. W., Kessler, J. O., Goldstein, R. E., 10.1073/pnas.0406724102, Proc. Natl. Acad. Sci. USA 102 (2005), 2277-2282. (2005) Zbl1277.35332DOI10.1073/pnas.0406724102
- Wang, Y., 10.3934/dcdss.2020019, Discrete Contin. Dyn. Syst., Ser. S 13 (2020), 329-349. (2020) Zbl1442.35481MR4043697DOI10.3934/dcdss.2020019
- Wang, Y., Winkler, M., Xiang, Z., 10.2422/2036-2145.201603_004, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. (2018) Zbl1395.92024MR3801284DOI10.2422/2036-2145.201603_004
- Wang, Y., Winkler, M., Xiang, Z., 10.1007/s00209-017-1944-6, Math. Z. 289 (2018), 71-108. (2018) Zbl1397.35322MR3803783DOI10.1007/s00209-017-1944-6
- Wang, Y., Zhao, L., 10.1016/j.jde.2019.12.002, J. Differ. Equations 269 (2020), 148-179. (2020) Zbl1436.35238MR4081519DOI10.1016/j.jde.2019.12.002
- Winkler, M., 10.1002/mana.200810838, Math. Nachr. 283 (2010), 1664-1673. (2010) Zbl1205.35037MR2759803DOI10.1002/mana.200810838
- Winkler, M., 10.1016/j.jde.2010.02.008, J. Differ. Equations 248 (2010), 2889-2905. (2010) Zbl1190.92004MR2644137DOI10.1016/j.jde.2010.02.008
- Winkler, M., 10.1080/03605302.2011.591865, Commun. Partial Differ. Equations 37 (2012), 319-351. (2012) Zbl1236.35192MR2876834DOI10.1080/03605302.2011.591865
- Winkler, M., 10.1007/s00205-013-0678-9, Arch. Ration. Mech. Anal. 211 (2014), 455-487. (2014) Zbl1293.35220MR3149063DOI10.1007/s00205-013-0678-9
- Winkler, M., 10.1007/s00526-015-0922-2, Calc. Var. Partial Differ. Equ. 54 (2015), 3789-3828. (2015) Zbl1333.35104MR3426095DOI10.1007/s00526-015-0922-2
- Winkler, M., 10.1016/J.ANIHPC.2015.05.002, Ann. Inst. H. Poincaré, Anal. Non Linéaire 33 (2016), 1329-1352. (2016) Zbl1351.35239MR3542616DOI10.1016/J.ANIHPC.2015.05.002
- Winkler, M., 10.1090/tran/6733, Trans. Am. Math. Soc. 369 (2017), 3067-3125. (2017) Zbl1356.35071MR3605965DOI10.1090/tran/6733
- Winkler, M., 10.1016/j.jde.2018.01.027, J. Differ. Equations 264 (2018), 6109-6151. (2018) Zbl1395.35038MR3770046DOI10.1016/j.jde.2018.01.027
- Winkler, M., 10.1016/j.jfa.2018.12.009, J. Funct. Anal. 276 (2019), 1339-1401. (2019) Zbl1408.35132MR3912779DOI10.1016/j.jfa.2018.12.009
- Yu, P., 10.1002/mma.5920, Math. Methods Appl. Sci. 43 (2020), 639-657. (2020) Zbl1439.35254MR4056454DOI10.1002/mma.5920
- Zhang, Q., Li, Y., 10.3934/dcdsb.2015.20.2751, Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2751-2759. (2015) Zbl1334.35104MR3423254DOI10.3934/dcdsb.2015.20.2751
- Zhang, Q., Li, Y., 10.1016/j.jde.2015.05.012, J. Differ. Equations 259 (2015), 3730-3754. (2015) Zbl1320.35352MR3369260DOI10.1016/j.jde.2015.05.012
- Zhang, Q., Zheng, X., 10.1137/130936920, SIAM J. Math. Anal. 46 (2014), 3078-3105. (2014) Zbl1444.35011MR3252810DOI10.1137/130936920
- Zheng, J., 10.1007/s10231-021-01115-4, Ann. Mat. Pura Appl. (4) 201 (2022), 243-288. (2022) Zbl1485.35119MR4375009DOI10.1007/s10231-021-01115-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.