Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system

Yanjiang Li; Zhongqing Yu; Yumei Huang

Czechoslovak Mathematical Journal (2024)

  • Issue: 1, page 153-175
  • ISSN: 0011-4642

Abstract

top
The self-consistent chemotaxis-fluid system n t + u · n = Δ n - · ( n c ) + · ( n φ ) , x Ω , t > 0 , c t + u · c = Δ c - n c , x Ω , t > 0 , u t + κ ( u · ) u + P = Δ u - n φ + n c , x Ω , t > 0 , · u = 0 , x Ω , t > 0 , is considered under no-flux boundary conditions for n , c and the Dirichlet boundary condition for u on a bounded smooth domain Ω N ( N = 2 , 3 ) , κ { 0 , 1 } . The existence of global bounded classical solutions is proved under a smallness assumption on c 0 L ( Ω ) . Both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered here, and thus the coupling is stronger than the most studied chemotaxis-fluid systems. The literature on self-consistent chemotaxis-fluid systems of this type so far concentrates on the nonlinear cell diffusion as an additional dissipative mechanism. To the best of our knowledge, this is the first result on the boundedness of a self-consistent chemotaxis-fluid system with linear cell diffusion.

How to cite

top

Li, Yanjiang, Yu, Zhongqing, and Huang, Yumei. "Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system." Czechoslovak Mathematical Journal (2024): 153-175. <http://eudml.org/doc/299213>.

@article{Li2024,
abstract = {The self-consistent chemotaxis-fluid system \[ \{\left\lbrace \begin\{array\}\{ll\} n\_t+u\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla c )+\nabla \cdot (n\nabla \phi ), &x\in \Omega ,\ t>0,\\ c\_t +u\cdot \nabla c=\Delta c -nc,\quad &x\in \Omega ,\ t>0,\\ u\_t+\kappa (u\cdot \nabla ) u+\nabla P=\Delta u - n\nabla \phi +n \nabla c,\qquad &x\in \Omega ,\ t>0,\\ \nabla \cdot u=0,\quad &x\in \Omega ,\ t>0, \end\{array\}\right.\} \] is considered under no-flux boundary conditions for $n, c$ and the Dirichlet boundary condition for $u$ on a bounded smooth domain $ \Omega \subset \mathbb \{R\}^N$$(N=2,3)$, $\kappa \in \lbrace 0,1 \rbrace $. The existence of global bounded classical solutions is proved under a smallness assumption on $\Vert c_\{0\}\Vert _\{L^\{\infty \}(\Omega )\}$. Both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered here, and thus the coupling is stronger than the most studied chemotaxis-fluid systems. The literature on self-consistent chemotaxis-fluid systems of this type so far concentrates on the nonlinear cell diffusion as an additional dissipative mechanism. To the best of our knowledge, this is the first result on the boundedness of a self-consistent chemotaxis-fluid system with linear cell diffusion.},
author = {Li, Yanjiang, Yu, Zhongqing, Huang, Yumei},
journal = {Czechoslovak Mathematical Journal},
keywords = {chemotaxis; Navier-Stokes system; self-consistent; global existence; boundedness},
language = {eng},
number = {1},
pages = {153-175},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system},
url = {http://eudml.org/doc/299213},
year = {2024},
}

TY - JOUR
AU - Li, Yanjiang
AU - Yu, Zhongqing
AU - Huang, Yumei
TI - Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 153
EP - 175
AB - The self-consistent chemotaxis-fluid system \[ {\left\lbrace \begin{array}{ll} n_t+u\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla c )+\nabla \cdot (n\nabla \phi ), &x\in \Omega ,\ t>0,\\ c_t +u\cdot \nabla c=\Delta c -nc,\quad &x\in \Omega ,\ t>0,\\ u_t+\kappa (u\cdot \nabla ) u+\nabla P=\Delta u - n\nabla \phi +n \nabla c,\qquad &x\in \Omega ,\ t>0,\\ \nabla \cdot u=0,\quad &x\in \Omega ,\ t>0, \end{array}\right.} \] is considered under no-flux boundary conditions for $n, c$ and the Dirichlet boundary condition for $u$ on a bounded smooth domain $ \Omega \subset \mathbb {R}^N$$(N=2,3)$, $\kappa \in \lbrace 0,1 \rbrace $. The existence of global bounded classical solutions is proved under a smallness assumption on $\Vert c_{0}\Vert _{L^{\infty }(\Omega )}$. Both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered here, and thus the coupling is stronger than the most studied chemotaxis-fluid systems. The literature on self-consistent chemotaxis-fluid systems of this type so far concentrates on the nonlinear cell diffusion as an additional dissipative mechanism. To the best of our knowledge, this is the first result on the boundedness of a self-consistent chemotaxis-fluid system with linear cell diffusion.
LA - eng
KW - chemotaxis; Navier-Stokes system; self-consistent; global existence; boundedness
UR - http://eudml.org/doc/299213
ER -

References

top
  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M., 10.1142/S021820251550044X, Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. (2015) Zbl1326.35397MR3351175DOI10.1142/S021820251550044X
  2. Bellomo, N., Outada, N., Soler, J., Tao, Y., Winkler, M., 10.1142/S0218202522500166, Math. Models Methods Appl. Sci. 32 (2022), 713-792. (2022) Zbl1497.35039MR4421216DOI10.1142/S0218202522500166
  3. Cao, X., 10.1016/j.jde.2016.09.007, J. Differ. Equations 261 (2016), 6883-6914. (2016) Zbl1352.35092MR3562314DOI10.1016/j.jde.2016.09.007
  4. Carrillo, J. A., Peng, Y., Xiang, Z., Global existence and decay rates to self-consistent chemotaxis-fluid system, Available at https://arxiv.org/abs/2302.03274 (2023), 36 pages. (2023) MR4671518
  5. Chae, M., Kang, K., Lee, J., 10.3934/dcds.2013.33.2271, Discrete Contin. Dyn. Syst. 33 (2013), 2271-2297. (2013) Zbl1277.35276MR3007686DOI10.3934/dcds.2013.33.2271
  6. Chae, M., Kang, K., Lee, J., 10.1080/03605302.2013.852224, Commun. Partial Differ. Equations 39 (2014), 1205-1235. (2014) Zbl1304.35481MR3208807DOI10.1080/03605302.2013.852224
  7. Francesco, M. Di, Lorz, A., Markowich, P. A., 10.3934/dcds.2010.28.1437, Discrete Contin. Dyn. Syst. 28 (2010), 1437-1453. (2010) Zbl1276.35103MR2679718DOI10.3934/dcds.2010.28.1437
  8. Duan, R., Li, X., Xiang, Z., 10.1016/j.jde.2017.07.015, J. Differ. Equations 263 (2017), 6284-6316. (2017) Zbl1378.35160MR3693175DOI10.1016/j.jde.2017.07.015
  9. Duan, R., Lorz, A., Markowich, P. A., 10.1080/03605302.2010.497199, Commun. Partial Differ. Equations 35 (2010), 1635-1673. (2010) Zbl1275.35005MR2754058DOI10.1080/03605302.2010.497199
  10. Galdi, G. P., 10.1007/978-1-4757-3866-7, Springer Tracts in Natural Philosophy 38. Springer, Berlin (1994). (1994) Zbl0949.35004MR1284205DOI10.1007/978-1-4757-3866-7
  11. He, P., Wang, Y., Zhao, L., 10.1016/j.aml.2018.09.019, Appl. Math. Lett. 90 (2019), 23-29. (2019) Zbl1410.35249MR3875493DOI10.1016/j.aml.2018.09.019
  12. Horstmann, D., From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. (2003) Zbl1071.35001MR2013508
  13. Ishida, S., 10.3934/dcds.2015.35.3463, Discrete Contin. Dyn. Syst. 35 (2015), 3463-3482. (2015) Zbl1308.35214MR3320134DOI10.3934/dcds.2015.35.3463
  14. Jin, C., Global bounded solution in three-dimensional chemotaxis-Stokes model with arbitrary porous medium slow diffusion, Available at https://arxiv.org/abs/2101.11235 (2021), 24 pages. (2021) 
  15. Jin, C., Wang, Y., Yin, J., Global solvability and stability to a nutrient-taxis model with porous medium slow diffusion, Available at https://arxiv.org/abs/1804.03964 (2018), 35 pages. (2018) MR4635735
  16. Keller, E. F., Segel, L. A., 10.1016/0022-5193(70)90092-5, J. Theor. Biol. 26 (1970), 399-415. (1970) Zbl1170.92306MR3925816DOI10.1016/0022-5193(70)90092-5
  17. Kozono, H., Yanagisawa, T., 10.1007/s00209-008-0361-2, Math. Z. 262 (2009), 27-39. (2009) Zbl1169.35045MR2491599DOI10.1007/s00209-008-0361-2
  18. Li, X., Wang, Y., Xiang, Z., 10.4310/CMS.2016.v14.n7.a5, Commun. Math. Sci. 14 (2016), 1889-1910. (2016) Zbl1351.35073MR3549354DOI10.4310/CMS.2016.v14.n7.a5
  19. Liu, J.-G., Lorz, A., 10.1016/J.ANIHPC.2011.04.005, Ann. Inst. H. Poincaré, Anal. Non Linéaire 28 (2011), 643-652. (2011) Zbl1236.92013MR2838394DOI10.1016/J.ANIHPC.2011.04.005
  20. Lorz, A., 10.1142/S0218202510004507, Math. Models Methods Appl. Sci. 20 (2010), 987-1004. (2010) Zbl1191.92004MR2659745DOI10.1142/S0218202510004507
  21. Patlak, C. S., 10.1007/BF02476407, Bull. Math. Biophys. 15 (1953), 311-338. (1953) Zbl1296.82044MR0081586DOI10.1007/BF02476407
  22. Peng, Y., Xiang, Z., 10.1007/s00033-017-0816-6, Z. Angew. Math. Phys. 68 (2017), Article ID 68, 26 pages. (2017) Zbl1386.35189MR3654908DOI10.1007/s00033-017-0816-6
  23. Tan, Z., Zhang, X., 10.1016/j.jmaa.2013.08.008, J. Math. Anal. Appl. 410 (2014), 27-38. (2014) Zbl1333.92015MR3109817DOI10.1016/j.jmaa.2013.08.008
  24. Tao, Y., 10.1016/j.jmaa.2011.02.041, J. Math. Anal. Appl. 381 (2011), 521-529. (2011) Zbl1225.35118MR2802089DOI10.1016/j.jmaa.2011.02.041
  25. Tao, Y., Winkler, M., 10.3934/dcds.2012.32.1901, Discrete Contin. Dyn. Syst. 32 (2012), 1901-1914. (2012) Zbl1276.35105MR2871341DOI10.3934/dcds.2012.32.1901
  26. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C. W., Kessler, J. O., Goldstein, R. E., 10.1073/pnas.0406724102, Proc. Natl. Acad. Sci. USA 102 (2005), 2277-2282. (2005) Zbl1277.35332DOI10.1073/pnas.0406724102
  27. Wang, Y., 10.3934/dcdss.2020019, Discrete Contin. Dyn. Syst., Ser. S 13 (2020), 329-349. (2020) Zbl1442.35481MR4043697DOI10.3934/dcdss.2020019
  28. Wang, Y., Winkler, M., Xiang, Z., 10.2422/2036-2145.201603_004, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. (2018) Zbl1395.92024MR3801284DOI10.2422/2036-2145.201603_004
  29. Wang, Y., Winkler, M., Xiang, Z., 10.1007/s00209-017-1944-6, Math. Z. 289 (2018), 71-108. (2018) Zbl1397.35322MR3803783DOI10.1007/s00209-017-1944-6
  30. Wang, Y., Zhao, L., 10.1016/j.jde.2019.12.002, J. Differ. Equations 269 (2020), 148-179. (2020) Zbl1436.35238MR4081519DOI10.1016/j.jde.2019.12.002
  31. Winkler, M., 10.1002/mana.200810838, Math. Nachr. 283 (2010), 1664-1673. (2010) Zbl1205.35037MR2759803DOI10.1002/mana.200810838
  32. Winkler, M., 10.1016/j.jde.2010.02.008, J. Differ. Equations 248 (2010), 2889-2905. (2010) Zbl1190.92004MR2644137DOI10.1016/j.jde.2010.02.008
  33. Winkler, M., 10.1080/03605302.2011.591865, Commun. Partial Differ. Equations 37 (2012), 319-351. (2012) Zbl1236.35192MR2876834DOI10.1080/03605302.2011.591865
  34. Winkler, M., 10.1007/s00205-013-0678-9, Arch. Ration. Mech. Anal. 211 (2014), 455-487. (2014) Zbl1293.35220MR3149063DOI10.1007/s00205-013-0678-9
  35. Winkler, M., 10.1007/s00526-015-0922-2, Calc. Var. Partial Differ. Equ. 54 (2015), 3789-3828. (2015) Zbl1333.35104MR3426095DOI10.1007/s00526-015-0922-2
  36. Winkler, M., 10.1016/J.ANIHPC.2015.05.002, Ann. Inst. H. Poincaré, Anal. Non Linéaire 33 (2016), 1329-1352. (2016) Zbl1351.35239MR3542616DOI10.1016/J.ANIHPC.2015.05.002
  37. Winkler, M., 10.1090/tran/6733, Trans. Am. Math. Soc. 369 (2017), 3067-3125. (2017) Zbl1356.35071MR3605965DOI10.1090/tran/6733
  38. Winkler, M., 10.1016/j.jde.2018.01.027, J. Differ. Equations 264 (2018), 6109-6151. (2018) Zbl1395.35038MR3770046DOI10.1016/j.jde.2018.01.027
  39. Winkler, M., 10.1016/j.jfa.2018.12.009, J. Funct. Anal. 276 (2019), 1339-1401. (2019) Zbl1408.35132MR3912779DOI10.1016/j.jfa.2018.12.009
  40. Yu, P., 10.1002/mma.5920, Math. Methods Appl. Sci. 43 (2020), 639-657. (2020) Zbl1439.35254MR4056454DOI10.1002/mma.5920
  41. Zhang, Q., Li, Y., 10.3934/dcdsb.2015.20.2751, Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2751-2759. (2015) Zbl1334.35104MR3423254DOI10.3934/dcdsb.2015.20.2751
  42. Zhang, Q., Li, Y., 10.1016/j.jde.2015.05.012, J. Differ. Equations 259 (2015), 3730-3754. (2015) Zbl1320.35352MR3369260DOI10.1016/j.jde.2015.05.012
  43. Zhang, Q., Zheng, X., 10.1137/130936920, SIAM J. Math. Anal. 46 (2014), 3078-3105. (2014) Zbl1444.35011MR3252810DOI10.1137/130936920
  44. Zheng, J., 10.1007/s10231-021-01115-4, Ann. Mat. Pura Appl. (4) 201 (2022), 243-288. (2022) Zbl1485.35119MR4375009DOI10.1007/s10231-021-01115-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.