On generalized bihyperbolic Mersenne numbers
Dorota Bród; Anetta Szynal-Liana
Mathematica Bohemica (2024)
- Issue: 1, page 75-85
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBród, Dorota, and Szynal-Liana, Anetta. "On generalized bihyperbolic Mersenne numbers." Mathematica Bohemica (2024): 75-85. <http://eudml.org/doc/299220>.
@article{Bród2024,
abstract = {In this paper, a new generalization of Mersenne bihyperbolic numbers is introduced. Some of the properties of presented numbers are given. A general bilinear index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained. This result implies the Catalan, Cassini, Vajda, d'Ocagne and Halton identities. Moreover, generating function and matrix generators for these numbers are presented.},
author = {Bród, Dorota, Szynal-Liana, Anetta},
journal = {Mathematica Bohemica},
keywords = {Mersenne number; hyperbolic number; bihyperbolic number; recurrence relation},
language = {eng},
number = {1},
pages = {75-85},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized bihyperbolic Mersenne numbers},
url = {http://eudml.org/doc/299220},
year = {2024},
}
TY - JOUR
AU - Bród, Dorota
AU - Szynal-Liana, Anetta
TI - On generalized bihyperbolic Mersenne numbers
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 75
EP - 85
AB - In this paper, a new generalization of Mersenne bihyperbolic numbers is introduced. Some of the properties of presented numbers are given. A general bilinear index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained. This result implies the Catalan, Cassini, Vajda, d'Ocagne and Halton identities. Moreover, generating function and matrix generators for these numbers are presented.
LA - eng
KW - Mersenne number; hyperbolic number; bihyperbolic number; recurrence relation
UR - http://eudml.org/doc/299220
ER -
References
top- Bilgin, M., Ersoy, S., 10.1007/s00006-019-1036-2, Adv. Appl. Clifford Algebr. 30 (2020), Article ID 13, 17 pages. (2020) Zbl1442.30049MR4054825DOI10.1007/s00006-019-1036-2
- Catarino, P., Campos, H., Vasco, P., On the Mersenne sequence, Ann. Math. Inform. 46 (2016), 37-53. (2016) Zbl1374.11020MR3607003
- Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P., 10.1007/978-3-7643-8614-6, Frontiers in Mathematics. Birkhäuser, Basel (2008). (2008) Zbl1151.53001MR2411620DOI10.1007/978-3-7643-8614-6
- Chelgham, M., Boussayoud, A., 10.7546/nntdm.2021.27.1.7-13, Notes Number Theory Discrete Math. 27 (2021), 7-13. (2021) DOI10.7546/nntdm.2021.27.1.7-13
- Cockle, J., 10.1080/14786444808646139, Phil. Mag. (3) 33 (1848), 435-439. (1848) DOI10.1080/14786444808646139
- Cockle, J., 10.1080/14786444908646169, Phil. Mag. (3) 34 (1849), 37-47. (1849) DOI10.1080/14786444908646169
- Cockle, J., 10.1080/14786444908646257, Phil. Mag. (3) 34 (1849), 406-410. (1849) DOI10.1080/14786444908646257
- Cockle, J., 10.1080/14786445008646598, Phil. Mag. (3) 37 (1850), 281-283. (1850) DOI10.1080/14786445008646598
- Daşdemir, A., Bilgici, G., 10.7546/nntdm.2019.25.3.87-96, Notes Number Theory Discrete Math. 25 (2019), 87-96. (2019) MR3914745DOI10.7546/nntdm.2019.25.3.87-96
- Ochalik, P., W{ł}och, A., 10.17951/a.2018.72.1.69-76, Ann. Univ. Mariae Curie-Sk{ł}odowska, Sect. A 72 (2018), 69-76. (2018) Zbl1441.11027MR3832418DOI10.17951/a.2018.72.1.69-76
- Olariu, S., 10.1016/S0304-0208(02)80004-4, Complex Numbers in Dimensions North-Holland Mathematics Studies 190. Elsevier, Amsterdam (2002), 51-147. (2002) Zbl1023.30001MR1922267DOI10.1016/S0304-0208(02)80004-4
- Pogorui, A. A., Rodríguez-Dagnino, R. M., Rodríguez-Said, R. D., 10.1080/17476930801973014, Complex Var. Elliptic Equ. 53 (2008), 685-690. (2008) Zbl1158.30300MR2431350DOI10.1080/17476930801973014
- Rochon, D., Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, An. Univ. Oradea, Fasc. Mat. 11 (2004), 71-110. (2004) Zbl1114.11033MR2127591
- Sergeev, A. M., 10.3103/S0146411614040063, Autom. Control Comput. Sci. 48 (2014), 214-220. (2014) DOI10.3103/S0146411614040063
- Soykan, Y., A study of generalized Mersenne numbers, J. Progress. Research Math. 18 (2021), 90-108. (2021)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.