On generalized bihyperbolic Mersenne numbers

Dorota Bród; Anetta Szynal-Liana

Mathematica Bohemica (2024)

  • Issue: 1, page 75-85
  • ISSN: 0862-7959

Abstract

top
In this paper, a new generalization of Mersenne bihyperbolic numbers is introduced. Some of the properties of presented numbers are given. A general bilinear index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained. This result implies the Catalan, Cassini, Vajda, d'Ocagne and Halton identities. Moreover, generating function and matrix generators for these numbers are presented.

How to cite

top

Bród, Dorota, and Szynal-Liana, Anetta. "On generalized bihyperbolic Mersenne numbers." Mathematica Bohemica (2024): 75-85. <http://eudml.org/doc/299220>.

@article{Bród2024,
abstract = {In this paper, a new generalization of Mersenne bihyperbolic numbers is introduced. Some of the properties of presented numbers are given. A general bilinear index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained. This result implies the Catalan, Cassini, Vajda, d'Ocagne and Halton identities. Moreover, generating function and matrix generators for these numbers are presented.},
author = {Bród, Dorota, Szynal-Liana, Anetta},
journal = {Mathematica Bohemica},
keywords = {Mersenne number; hyperbolic number; bihyperbolic number; recurrence relation},
language = {eng},
number = {1},
pages = {75-85},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized bihyperbolic Mersenne numbers},
url = {http://eudml.org/doc/299220},
year = {2024},
}

TY - JOUR
AU - Bród, Dorota
AU - Szynal-Liana, Anetta
TI - On generalized bihyperbolic Mersenne numbers
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 75
EP - 85
AB - In this paper, a new generalization of Mersenne bihyperbolic numbers is introduced. Some of the properties of presented numbers are given. A general bilinear index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained. This result implies the Catalan, Cassini, Vajda, d'Ocagne and Halton identities. Moreover, generating function and matrix generators for these numbers are presented.
LA - eng
KW - Mersenne number; hyperbolic number; bihyperbolic number; recurrence relation
UR - http://eudml.org/doc/299220
ER -

References

top
  1. Bilgin, M., Ersoy, S., 10.1007/s00006-019-1036-2, Adv. Appl. Clifford Algebr. 30 (2020), Article ID 13, 17 pages. (2020) Zbl1442.30049MR4054825DOI10.1007/s00006-019-1036-2
  2. Catarino, P., Campos, H., Vasco, P., On the Mersenne sequence, Ann. Math. Inform. 46 (2016), 37-53. (2016) Zbl1374.11020MR3607003
  3. Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P., 10.1007/978-3-7643-8614-6, Frontiers in Mathematics. Birkhäuser, Basel (2008). (2008) Zbl1151.53001MR2411620DOI10.1007/978-3-7643-8614-6
  4. Chelgham, M., Boussayoud, A., 10.7546/nntdm.2021.27.1.7-13, Notes Number Theory Discrete Math. 27 (2021), 7-13. (2021) DOI10.7546/nntdm.2021.27.1.7-13
  5. Cockle, J., 10.1080/14786444808646139, Phil. Mag. (3) 33 (1848), 435-439. (1848) DOI10.1080/14786444808646139
  6. Cockle, J., 10.1080/14786444908646169, Phil. Mag. (3) 34 (1849), 37-47. (1849) DOI10.1080/14786444908646169
  7. Cockle, J., 10.1080/14786444908646257, Phil. Mag. (3) 34 (1849), 406-410. (1849) DOI10.1080/14786444908646257
  8. Cockle, J., 10.1080/14786445008646598, Phil. Mag. (3) 37 (1850), 281-283. (1850) DOI10.1080/14786445008646598
  9. Daşdemir, A., Bilgici, G., 10.7546/nntdm.2019.25.3.87-96, Notes Number Theory Discrete Math. 25 (2019), 87-96. (2019) MR3914745DOI10.7546/nntdm.2019.25.3.87-96
  10. Ochalik, P., W{ł}och, A., 10.17951/a.2018.72.1.69-76, Ann. Univ. Mariae Curie-Sk{ł}odowska, Sect. A 72 (2018), 69-76. (2018) Zbl1441.11027MR3832418DOI10.17951/a.2018.72.1.69-76
  11. Olariu, S., 10.1016/S0304-0208(02)80004-4, Complex Numbers in Dimensions North-Holland Mathematics Studies 190. Elsevier, Amsterdam (2002), 51-147. (2002) Zbl1023.30001MR1922267DOI10.1016/S0304-0208(02)80004-4
  12. Pogorui, A. A., Rodríguez-Dagnino, R. M., Rodríguez-Said, R. D., 10.1080/17476930801973014, Complex Var. Elliptic Equ. 53 (2008), 685-690. (2008) Zbl1158.30300MR2431350DOI10.1080/17476930801973014
  13. Rochon, D., Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, An. Univ. Oradea, Fasc. Mat. 11 (2004), 71-110. (2004) Zbl1114.11033MR2127591
  14. Sergeev, A. M., 10.3103/S0146411614040063, Autom. Control Comput. Sci. 48 (2014), 214-220. (2014) DOI10.3103/S0146411614040063
  15. Soykan, Y., A study of generalized Mersenne numbers, J. Progress. Research Math. 18 (2021), 90-108. (2021) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.