Quasigroup covers of division groupoids

Jaroslav J. Ježek; Tomáš Kepka; Petr Němec

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 3, page 265-278
  • ISSN: 0010-2628

Abstract

top
Let G be a division groupoid that is not a quasigroup. For each regular cardinal α > | G | we construct a quasigroup Q on G × α that is a quasigroup cover of G (i.e., G is a homomorphic image of Q and G is not an image of any quasigroup that is a proper factor of Q ). We also show how to easily obtain quasigroup covers from free quasigroups.

How to cite

top

Ježek, Jaroslav J., Kepka, Tomáš, and Němec, Petr. "Quasigroup covers of division groupoids." Commentationes Mathematicae Universitatis Carolinae 64.3 (2023): 265-278. <http://eudml.org/doc/299226>.

@article{Ježek2023,
abstract = {Let $G$ be a division groupoid that is not a quasigroup. For each regular cardinal $\alpha >|G|$ we construct a quasigroup $Q$ on $G\times \alpha $ that is a quasigroup cover of $G$ (i.e., $G$ is a homomorphic image of $Q$ and $G$ is not an image of any quasigroup that is a proper factor of $Q$). We also show how to easily obtain quasigroup covers from free quasigroups.},
author = {Ježek, Jaroslav J., Kepka, Tomáš, Němec, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {groupoid; division; quasigroup; cover},
language = {eng},
number = {3},
pages = {265-278},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Quasigroup covers of division groupoids},
url = {http://eudml.org/doc/299226},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Ježek, Jaroslav J.
AU - Kepka, Tomáš
AU - Němec, Petr
TI - Quasigroup covers of division groupoids
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 3
SP - 265
EP - 278
AB - Let $G$ be a division groupoid that is not a quasigroup. For each regular cardinal $\alpha >|G|$ we construct a quasigroup $Q$ on $G\times \alpha $ that is a quasigroup cover of $G$ (i.e., $G$ is a homomorphic image of $Q$ and $G$ is not an image of any quasigroup that is a proper factor of $Q$). We also show how to easily obtain quasigroup covers from free quasigroups.
LA - eng
KW - groupoid; division; quasigroup; cover
UR - http://eudml.org/doc/299226
ER -

References

top
  1. Albert A. A., 10.1090/S0002-9947-1943-0009962-7, Trans. Amer. Math. Soc. 54 (1943), 507–519. MR0009962DOI10.1090/S0002-9947-1943-0009962-7
  2. Baer R., 10.2307/2371960, Amer. J. Math. 67 (1945), 458–460. Zbl0063.00166MR0012302DOI10.2307/2371960
  3. Bates G. E., Kiokemeister F., 10.1090/S0002-9904-1948-09146-7, Bull. Amer. Math. Soc. 54 (1948), 1180–1185. MR0027768DOI10.1090/S0002-9904-1948-09146-7
  4. Bruck R. H., 10.1090/S0002-9904-1944-08236-0, Bull. Amer. Math. Soc. 50 (1944), 769–781. MR0011311DOI10.1090/S0002-9904-1944-08236-0
  5. Bruck R. H., 10.1090/S0002-9947-1944-0011083-5, Trans. Amer. Math. Soc. 56 (1944), 141–199. MR0011083DOI10.1090/S0002-9947-1944-0011083-5
  6. Bruck R. H., A Survey of Binary Systems, Gruppentheorie, Ergebnisse der Mathematik und ihre Grenzgebiete, (N.F.), 20, Springer, Berlin, 1958. Zbl0141.01401MR0093552
  7. Evans T., On multiplicative systems defined by generators and relations. I. Normal form theorems, Proc. Cambridge Philos. Soc. 47 (1951), 637–649. MR0043764
  8. Garrison G. N., Quasi-groups, Ann. of Math. (2) 41 (1940), 474–487. MR0002150
  9. Hausmann B. A., Ore O., 10.2307/2371362, Amer. J. Math. 59 (1937), no. 4, 983–1004. MR1507296DOI10.2307/2371362
  10. Kepka T., Němec P., In memory of Jaroslav Ježek, Acta Univ. Carolin. Math. Phys. 53 (2012), no. 2, 3–4. MR3099636
  11. Kiokemeister F., 10.2307/2371934, Amer. J. Math. 70 (1948), 99–106. MR0023252DOI10.2307/2371934

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.