Some properties of generalized distance eigenvalues of graphs

Yuzheng Ma; Yan Ling Shao

Czechoslovak Mathematical Journal (2024)

  • Issue: 1, page 1-15
  • ISSN: 0011-4642

Abstract

top
Let G be a simple connected graph with vertex set V ( G ) = { v 1 , v 2 , , v n } and edge set E ( G ) , and let d v i be the degree of the vertex v i . Let D ( G ) be the distance matrix and let T r ( G ) be the diagonal matrix of the vertex transmissions of G . The generalized distance matrix of G is defined as D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where 0 α 1 . Let λ 1 ( D α ( G ) ) λ 2 ( D α ( G ) ) ... λ n ( D α ( G ) ) be the generalized distance eigenvalues of G , and let k be an integer with 1 k n . We denote by S k ( D α ( G ) ) = λ 1 ( D α ( G ) ) + λ 2 ( D α ( G ) ) + ... + λ k ( D α ( G ) ) the sum of the k largest generalized distance eigenvalues. The generalized distance spread of a graph G is defined as D α S ( G ) = λ 1 ( D α ( G ) ) - λ n ( D α ( G ) ) . We obtain some bounds on S k ( ( D α ( G ) ) ) and D α S ( G ) of graph G , respectively.

How to cite

top

Ma, Yuzheng, and Shao, Yan Ling. "Some properties of generalized distance eigenvalues of graphs." Czechoslovak Mathematical Journal (2024): 1-15. <http://eudml.org/doc/299228>.

@article{Ma2024,
abstract = {Let $G$ be a simple connected graph with vertex set $V(G)=\lbrace v_1,v_2,\dots ,v_n \rbrace $ and edge set $E(G)$, and let $d_\{v_\{i\}\}$ be the degree of the vertex $v_i$. Let $D(G)$ be the distance matrix and let $T_r(G)$ be the diagonal matrix of the vertex transmissions of $G$. The generalized distance matrix of $G$ is defined as $D_\alpha (G)=\alpha T_r(G)+(1-\alpha )D(G)$, where $0\le \alpha \le 1$. Let $\lambda _1(D_\{\alpha \}(G))\ge \lambda _2(D_\{\alpha \}(G)) \ge \ldots \ge \lambda _n(D_\{\alpha \}(G))$ be the generalized distance eigenvalues of $G$, and let $k$ be an integer with $1\le k\le n$. We denote by $S_\{k\}(D_\{\alpha \}(G))=\lambda _\{1\}(D_\{\alpha \}(G)) +\lambda _\{2\}(D_\{\alpha \}(G))+\ldots +\lambda _\{k\}(D_\{\alpha \}(G))$ the sum of the $k$ largest generalized distance eigenvalues. The generalized distance spread of a graph $G$ is defined as $D_\{\alpha \}S(G)=\lambda _\{1\}(D_\{\alpha \}(G))-\lambda _\{n\}(D_\{\alpha \}(G))$. We obtain some bounds on $S_k((D_\{\alpha \}(G)))$ and $D_\{\alpha \}S(G)$ of graph $G$, respectively.},
author = {Ma, Yuzheng, Shao, Yan Ling},
journal = {Czechoslovak Mathematical Journal},
keywords = {graph; generalized distance matrix; generalized distance eigenvalue; generalized distance spread},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of generalized distance eigenvalues of graphs},
url = {http://eudml.org/doc/299228},
year = {2024},
}

TY - JOUR
AU - Ma, Yuzheng
AU - Shao, Yan Ling
TI - Some properties of generalized distance eigenvalues of graphs
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 1
EP - 15
AB - Let $G$ be a simple connected graph with vertex set $V(G)=\lbrace v_1,v_2,\dots ,v_n \rbrace $ and edge set $E(G)$, and let $d_{v_{i}}$ be the degree of the vertex $v_i$. Let $D(G)$ be the distance matrix and let $T_r(G)$ be the diagonal matrix of the vertex transmissions of $G$. The generalized distance matrix of $G$ is defined as $D_\alpha (G)=\alpha T_r(G)+(1-\alpha )D(G)$, where $0\le \alpha \le 1$. Let $\lambda _1(D_{\alpha }(G))\ge \lambda _2(D_{\alpha }(G)) \ge \ldots \ge \lambda _n(D_{\alpha }(G))$ be the generalized distance eigenvalues of $G$, and let $k$ be an integer with $1\le k\le n$. We denote by $S_{k}(D_{\alpha }(G))=\lambda _{1}(D_{\alpha }(G)) +\lambda _{2}(D_{\alpha }(G))+\ldots +\lambda _{k}(D_{\alpha }(G))$ the sum of the $k$ largest generalized distance eigenvalues. The generalized distance spread of a graph $G$ is defined as $D_{\alpha }S(G)=\lambda _{1}(D_{\alpha }(G))-\lambda _{n}(D_{\alpha }(G))$. We obtain some bounds on $S_k((D_{\alpha }(G)))$ and $D_{\alpha }S(G)$ of graph $G$, respectively.
LA - eng
KW - graph; generalized distance matrix; generalized distance eigenvalue; generalized distance spread
UR - http://eudml.org/doc/299228
ER -

References

top
  1. Ajtai, M., Komlós, J., Szemerédi, E., 10.1016/0097-3165(80)90030-8, J. Comb. Theory, Ser. A 29 (1980), 354-360. (1980) Zbl0455.05045MR0600598DOI10.1016/0097-3165(80)90030-8
  2. Aouchiche, M., Hansen, P., 10.1016/j.laa.2013.02.030, Linear Algebra Appl. 439 (2013), 21-33. (2013) Zbl1282.05086MR3045220DOI10.1016/j.laa.2013.02.030
  3. Aouchiche, M., Hansen, P., 10.1016/j.laa.2014.06.010, Linear Algebra Appl. 458 (2014), 301-386. (2014) Zbl1295.05093MR3231823DOI10.1016/j.laa.2014.06.010
  4. Brouwer, A. E., Haemers, W. H., 10.1007/978-1-4614-1939-6, Universitext. Springer, Berlin (2012). (2012) Zbl1231.05001MR2882891DOI10.1007/978-1-4614-1939-6
  5. Buckley, F., Harary, F., Distance in Graphs, Addison-Wesley, Redwood (1990). (1990) Zbl0688.05017MR1045632
  6. Cui, S.-Y., He, J.-X., Tian, G.-X., 10.1016/j.laa.2018.10.014, Linear Algebra Appl. 563 (2019), 1-23. (2019) Zbl1403.05083MR3872977DOI10.1016/j.laa.2018.10.014
  7. Cui, S.-Y., Tian, G.-X., Zheng, L., 10.48550/arXiv.1901.07695, Available at https://arxiv.org/abs/1901.07695 (2019), 13 pages. (2019) DOI10.48550/arXiv.1901.07695
  8. Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B., 10.1016/j.laa.2009.03.038, Linear Algebra Appl. 432 (2010), 2214-2221. (2010) Zbl1218.05094MR2599854DOI10.1016/j.laa.2009.03.038
  9. Johnson, C. R., Kumar, R., Wolkowicz, H., 10.1016/0024-3795(85)90244-7, Linear Algebra Appl. 71 (1985), 161-173. (1985) Zbl0578.15013MR0813042DOI10.1016/0024-3795(85)90244-7
  10. Li, X., Mohapatra, E. N., Rodriguez, R. S., 10.1006/jmaa.2001.7565, J. Math. Anal. Appl. 267 (2002), 434-443. (2002) Zbl1007.26016MR1888014DOI10.1006/jmaa.2001.7565
  11. Lin, H., 10.1016/j.dam.2018.12.031, Discrete Appl. Math. 259 (2019), 153-159. (2019) Zbl1407.05151MR3944596DOI10.1016/j.dam.2018.12.031
  12. Merikoski, J. K., Kumar, R., 10.1016/S0024-3795(02)00534-7, Linear Algebra Appl. 364 (2003), 13-31. (2003) Zbl1021.15015MR1971085DOI10.1016/S0024-3795(02)00534-7
  13. Mirsky, L., 10.1112/S0025579300001790, Mathematica, Lond. 3 (1956), 127-130. (1956) Zbl0073.00903MR0081875DOI10.1112/S0025579300001790
  14. Pachpatte, B. G., 10.2991/978-94-91216-44-2, Atlantis Studies in Mathematics 3. Atlantis Press, Paris (2012). (2012) Zbl1238.26003MR3025304DOI10.2991/978-94-91216-44-2
  15. Parlett, B. N., 10.1137/1.9781611971163, Classics in Applied Mathematics 20. SIAM, Philadelphia (1998). (1998) Zbl0885.65039MR1490034DOI10.1137/1.9781611971163
  16. Pirzada, S., Ganie, H. A., Alhevaz, A., Baghipur, M., 10.1080/03081087.2020.1814194, Linear Multilinear Algebra 70 (2022), 2819-2835. (2022) Zbl1498.05173MR4491639DOI10.1080/03081087.2020.1814194
  17. Pirzada, S., Ganie, H. A., Rather, B. A., Shaban, R. Ul, 10.1016/j.laa.2020.05.022, Linear Algebra Appl. 603 (2020), 1-19. (2020) Zbl1484.05137MR4107088DOI10.1016/j.laa.2020.05.022
  18. Wiener, H., 10.1021/ja01193a005, J. Am. Chem. Soc. 69 (1947), 17-20. (1947) DOI10.1021/ja01193a005
  19. You, L., Ren, L., Yu, G., 10.1016/j.dam.2016.12.030, Discrete Appl. Math. 223 (2017), 140-147. (2017) Zbl1465.05109MR3627307DOI10.1016/j.dam.2016.12.030
  20. Yu, G., Zhang, H., Lin, H., Wu, Y., Shu, J., 10.1016/j.dam.2012.05.015, Discrete Appl. Math. 160 (2012), 2474-2478. (2012) Zbl1251.05100MR2957956DOI10.1016/j.dam.2012.05.015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.