Some properties of generalized distance eigenvalues of graphs

Yuzheng Ma; Yan Ling Shao

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 1, page 1-15
  • ISSN: 0011-4642

Abstract

top
Let G be a simple connected graph with vertex set V ( G ) = { v 1 , v 2 , , v n } and edge set E ( G ) , and let d v i be the degree of the vertex v i . Let D ( G ) be the distance matrix and let T r ( G ) be the diagonal matrix of the vertex transmissions of G . The generalized distance matrix of G is defined as D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where 0 α 1 . Let λ 1 ( D α ( G ) ) λ 2 ( D α ( G ) ) ... λ n ( D α ( G ) ) be the generalized distance eigenvalues of G , and let k be an integer with 1 k n . We denote by S k ( D α ( G ) ) = λ 1 ( D α ( G ) ) + λ 2 ( D α ( G ) ) + ... + λ k ( D α ( G ) ) the sum of the k largest generalized distance eigenvalues. The generalized distance spread of a graph G is defined as D α S ( G ) = λ 1 ( D α ( G ) ) - λ n ( D α ( G ) ) . We obtain some bounds on S k ( ( D α ( G ) ) ) and D α S ( G ) of graph G , respectively.

How to cite

top

Ma, Yuzheng, and Shao, Yan Ling. "Some properties of generalized distance eigenvalues of graphs." Czechoslovak Mathematical Journal 74.1 (2024): 1-15. <http://eudml.org/doc/299228>.

@article{Ma2024,
abstract = {Let $G$ be a simple connected graph with vertex set $V(G)=\lbrace v_1,v_2,\dots ,v_n \rbrace $ and edge set $E(G)$, and let $d_\{v_\{i\}\}$ be the degree of the vertex $v_i$. Let $D(G)$ be the distance matrix and let $T_r(G)$ be the diagonal matrix of the vertex transmissions of $G$. The generalized distance matrix of $G$ is defined as $D_\alpha (G)=\alpha T_r(G)+(1-\alpha )D(G)$, where $0\le \alpha \le 1$. Let $\lambda _1(D_\{\alpha \}(G))\ge \lambda _2(D_\{\alpha \}(G)) \ge \ldots \ge \lambda _n(D_\{\alpha \}(G))$ be the generalized distance eigenvalues of $G$, and let $k$ be an integer with $1\le k\le n$. We denote by $S_\{k\}(D_\{\alpha \}(G))=\lambda _\{1\}(D_\{\alpha \}(G)) +\lambda _\{2\}(D_\{\alpha \}(G))+\ldots +\lambda _\{k\}(D_\{\alpha \}(G))$ the sum of the $k$ largest generalized distance eigenvalues. The generalized distance spread of a graph $G$ is defined as $D_\{\alpha \}S(G)=\lambda _\{1\}(D_\{\alpha \}(G))-\lambda _\{n\}(D_\{\alpha \}(G))$. We obtain some bounds on $S_k((D_\{\alpha \}(G)))$ and $D_\{\alpha \}S(G)$ of graph $G$, respectively.},
author = {Ma, Yuzheng, Shao, Yan Ling},
journal = {Czechoslovak Mathematical Journal},
keywords = {graph; generalized distance matrix; generalized distance eigenvalue; generalized distance spread},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of generalized distance eigenvalues of graphs},
url = {http://eudml.org/doc/299228},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Ma, Yuzheng
AU - Shao, Yan Ling
TI - Some properties of generalized distance eigenvalues of graphs
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 1
SP - 1
EP - 15
AB - Let $G$ be a simple connected graph with vertex set $V(G)=\lbrace v_1,v_2,\dots ,v_n \rbrace $ and edge set $E(G)$, and let $d_{v_{i}}$ be the degree of the vertex $v_i$. Let $D(G)$ be the distance matrix and let $T_r(G)$ be the diagonal matrix of the vertex transmissions of $G$. The generalized distance matrix of $G$ is defined as $D_\alpha (G)=\alpha T_r(G)+(1-\alpha )D(G)$, where $0\le \alpha \le 1$. Let $\lambda _1(D_{\alpha }(G))\ge \lambda _2(D_{\alpha }(G)) \ge \ldots \ge \lambda _n(D_{\alpha }(G))$ be the generalized distance eigenvalues of $G$, and let $k$ be an integer with $1\le k\le n$. We denote by $S_{k}(D_{\alpha }(G))=\lambda _{1}(D_{\alpha }(G)) +\lambda _{2}(D_{\alpha }(G))+\ldots +\lambda _{k}(D_{\alpha }(G))$ the sum of the $k$ largest generalized distance eigenvalues. The generalized distance spread of a graph $G$ is defined as $D_{\alpha }S(G)=\lambda _{1}(D_{\alpha }(G))-\lambda _{n}(D_{\alpha }(G))$. We obtain some bounds on $S_k((D_{\alpha }(G)))$ and $D_{\alpha }S(G)$ of graph $G$, respectively.
LA - eng
KW - graph; generalized distance matrix; generalized distance eigenvalue; generalized distance spread
UR - http://eudml.org/doc/299228
ER -

References

top
  1. Ajtai, M., Komlós, J., Szemerédi, E., 10.1016/0097-3165(80)90030-8, J. Comb. Theory, Ser. A 29 (1980), 354-360. (1980) Zbl0455.05045MR0600598DOI10.1016/0097-3165(80)90030-8
  2. Aouchiche, M., Hansen, P., 10.1016/j.laa.2013.02.030, Linear Algebra Appl. 439 (2013), 21-33. (2013) Zbl1282.05086MR3045220DOI10.1016/j.laa.2013.02.030
  3. Aouchiche, M., Hansen, P., 10.1016/j.laa.2014.06.010, Linear Algebra Appl. 458 (2014), 301-386. (2014) Zbl1295.05093MR3231823DOI10.1016/j.laa.2014.06.010
  4. Brouwer, A. E., Haemers, W. H., 10.1007/978-1-4614-1939-6, Universitext. Springer, Berlin (2012). (2012) Zbl1231.05001MR2882891DOI10.1007/978-1-4614-1939-6
  5. Buckley, F., Harary, F., Distance in Graphs, Addison-Wesley, Redwood (1990). (1990) Zbl0688.05017MR1045632
  6. Cui, S.-Y., He, J.-X., Tian, G.-X., 10.1016/j.laa.2018.10.014, Linear Algebra Appl. 563 (2019), 1-23. (2019) Zbl1403.05083MR3872977DOI10.1016/j.laa.2018.10.014
  7. Cui, S.-Y., Tian, G.-X., Zheng, L., 10.48550/arXiv.1901.07695, Available at https://arxiv.org/abs/1901.07695 (2019), 13 pages. (2019) DOI10.48550/arXiv.1901.07695
  8. Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B., 10.1016/j.laa.2009.03.038, Linear Algebra Appl. 432 (2010), 2214-2221. (2010) Zbl1218.05094MR2599854DOI10.1016/j.laa.2009.03.038
  9. Johnson, C. R., Kumar, R., Wolkowicz, H., 10.1016/0024-3795(85)90244-7, Linear Algebra Appl. 71 (1985), 161-173. (1985) Zbl0578.15013MR0813042DOI10.1016/0024-3795(85)90244-7
  10. Li, X., Mohapatra, E. N., Rodriguez, R. S., 10.1006/jmaa.2001.7565, J. Math. Anal. Appl. 267 (2002), 434-443. (2002) Zbl1007.26016MR1888014DOI10.1006/jmaa.2001.7565
  11. Lin, H., 10.1016/j.dam.2018.12.031, Discrete Appl. Math. 259 (2019), 153-159. (2019) Zbl1407.05151MR3944596DOI10.1016/j.dam.2018.12.031
  12. Merikoski, J. K., Kumar, R., 10.1016/S0024-3795(02)00534-7, Linear Algebra Appl. 364 (2003), 13-31. (2003) Zbl1021.15015MR1971085DOI10.1016/S0024-3795(02)00534-7
  13. Mirsky, L., 10.1112/S0025579300001790, Mathematica, Lond. 3 (1956), 127-130. (1956) Zbl0073.00903MR0081875DOI10.1112/S0025579300001790
  14. Pachpatte, B. G., 10.2991/978-94-91216-44-2, Atlantis Studies in Mathematics 3. Atlantis Press, Paris (2012). (2012) Zbl1238.26003MR3025304DOI10.2991/978-94-91216-44-2
  15. Parlett, B. N., 10.1137/1.9781611971163, Classics in Applied Mathematics 20. SIAM, Philadelphia (1998). (1998) Zbl0885.65039MR1490034DOI10.1137/1.9781611971163
  16. Pirzada, S., Ganie, H. A., Alhevaz, A., Baghipur, M., 10.1080/03081087.2020.1814194, Linear Multilinear Algebra 70 (2022), 2819-2835. (2022) Zbl1498.05173MR4491639DOI10.1080/03081087.2020.1814194
  17. Pirzada, S., Ganie, H. A., Rather, B. A., Shaban, R. Ul, 10.1016/j.laa.2020.05.022, Linear Algebra Appl. 603 (2020), 1-19. (2020) Zbl1484.05137MR4107088DOI10.1016/j.laa.2020.05.022
  18. Wiener, H., 10.1021/ja01193a005, J. Am. Chem. Soc. 69 (1947), 17-20. (1947) DOI10.1021/ja01193a005
  19. You, L., Ren, L., Yu, G., 10.1016/j.dam.2016.12.030, Discrete Appl. Math. 223 (2017), 140-147. (2017) Zbl1465.05109MR3627307DOI10.1016/j.dam.2016.12.030
  20. Yu, G., Zhang, H., Lin, H., Wu, Y., Shu, J., 10.1016/j.dam.2012.05.015, Discrete Appl. Math. 160 (2012), 2474-2478. (2012) Zbl1251.05100MR2957956DOI10.1016/j.dam.2012.05.015

NotesEmbed ?

top

You must be logged in to post comments.