On a theorem of McCoy
Rajendra K. Sharma; Amit B. Singh
Mathematica Bohemica (2024)
- Issue: 1, page 27-38
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSharma, Rajendra K., and Singh, Amit B.. "On a theorem of McCoy." Mathematica Bohemica (2024): 27-38. <http://eudml.org/doc/299229>.
@article{Sharma2024,
abstract = {We study McCoy’s theorem to the skew Hurwitz series ring $(\{\rm HR\}, \omega )$ for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring $R$ satisfies McCoy’s theorem of skew Hurwitz series.},
author = {Sharma, Rajendra K., Singh, Amit B.},
journal = {Mathematica Bohemica},
keywords = {skew Hurwitz series ring; $\omega $-compatible ring; skew Hurwitz serieswise; quasi-Armendariz rings; zip ring; APP ring},
language = {eng},
number = {1},
pages = {27-38},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a theorem of McCoy},
url = {http://eudml.org/doc/299229},
year = {2024},
}
TY - JOUR
AU - Sharma, Rajendra K.
AU - Singh, Amit B.
TI - On a theorem of McCoy
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 27
EP - 38
AB - We study McCoy’s theorem to the skew Hurwitz series ring $({\rm HR}, \omega )$ for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring $R$ satisfies McCoy’s theorem of skew Hurwitz series.
LA - eng
KW - skew Hurwitz series ring; $\omega $-compatible ring; skew Hurwitz serieswise; quasi-Armendariz rings; zip ring; APP ring
UR - http://eudml.org/doc/299229
ER -
References
top- Ahmadi, M., Moussavi, A., Nourozi, V., 10.1142/S1793557114500363, Asian-Eur. J. Math. 7 (2014), Article ID 1450036, 19 pages. (2014) Zbl1308.16033MR3257511DOI10.1142/S1793557114500363
- Annin, S., 10.1142/S0219498804000782, J. Algera Appl. 3 (2004), 193-205. (2004) Zbl1060.16029MR2069261DOI10.1142/S0219498804000782
- Armendariz, E. P., 10.1017/S1446788700029190, J. Aust. Math. Soc. 18 (1974), 470-473. (1974) Zbl0292.16009MR0366979DOI10.1017/S1446788700029190
- Beachy, J. A., Blair, W. D., 10.2140/pjm.1975.58.1, Pac. J. Math. 58 (1975), 1-13. (1975) Zbl0309.16004MR0393092DOI10.2140/pjm.1975.58.1
- Benhissi, A., Koja, F., 10.1007/s11587-012-0128-2, Ric. Mat. 61 (2012), 255-273. (2012) Zbl1318.13034MR3000659DOI10.1007/s11587-012-0128-2
- Birkenmeier, G. F., Kim, J. Y., Park, J. K., 10.1090/conm/259, Algebra and Its Applications Contemporary Mathematics 259. AMS, Providence (2000), 67-92. (2000) Zbl0974.16006MR1778495DOI10.1090/conm/259
- Cedó, F., 10.1080/00927879108824242, Commun. Algebra 19 (1991), 1983-1991. (1991) Zbl0733.16007MR1121118DOI10.1080/00927879108824242
- Cortes, W., 10.1155/2008/496720, Int. J. Math. Math. Sci. 2008 (2008), Article ID 496720, 9 pages. (2008) Zbl1159.16021MR2393011DOI10.1155/2008/496720
- Faith, C., 10.5565/PUBLMAT_33289_09, Publ. Mat., Barc. 33 (1989), 329-338. (1989) Zbl0702.16015MR1030970DOI10.5565/PUBLMAT_33289_09
- Faith, C., 10.1080/00927879108824235, Commun. Algebra 19 (1991), 1867-1892. (1991) Zbl0729.16015MR1121111DOI10.1080/00927879108824235
- Fields, D. E., 10.1090/S0002-9939-1971-0271100-6, Proc. Am. Math. Soc. 27 (1971), 427-433. (1971) Zbl0219.13023MR0271100DOI10.1090/S0002-9939-1971-0271100-6
- Fliess, M., 10.24033/bsmf.1777, Bull. Soc. Math. Fr. 102 (1974), 181-191 French. (1974) Zbl0313.13021MR0354647DOI10.24033/bsmf.1777
- Gilmer, R., Grams, A., Parker, T., 10.1515/crll.1975.278-279.145, J. Reine Angew. Math. 278/279 (1975), 145-164. (1975) Zbl0309.13009MR0387274DOI10.1515/crll.1975.278-279.145
- Hashemi, E., Moussavi, A., 10.1007/s10474-005-0191-1, Acta. Math. Hung. 107 (2005), 207-224. (2005) Zbl1081.16032MR2148584DOI10.1007/s10474-005-0191-1
- Hassanein, A. M., Clean rings of skew Hurwitz series, Matematiche 62 (2007), 47-54. (2007) Zbl1150.16029MR2389111
- Hirano, Y., 10.1016/S0022-4049(01)00053-6, J. Pure Appl. Algebra 168 (2002), 45-52. (2002) Zbl1007.16020MR1879930DOI10.1016/S0022-4049(01)00053-6
- Hong, C. Y., Kim, N. K., Kwak, T. K., Lee, Y., 10.1016/j.jpaa.2004.08.025, J. Pure Appl. Algebra 195 (2005), 231-242. (2005) Zbl1071.16020MR2114273DOI10.1016/j.jpaa.2004.08.025
- Hong, C. Y., Kim, N. K., Lee, Y., 10.1017/S0017089509990243, Glasg. Math. J. 52 (2010), 155-159. (2010) Zbl1195.16026MR2587825DOI10.1017/S0017089509990243
- Jones, L. G., Weiner, L., 10.1080/00029890.1952.11988133, Am. Math. Mon. 59 (1952), 336-337. (1952) MR0048481DOI10.1080/00029890.1952.11988133
- Keigher, W. F., 10.2140/pjm.1975.59.99, Pac. J. Math. 59 (1975), 99-112. (1975) Zbl0327.12104MR0392957DOI10.2140/pjm.1975.59.99
- Keigher, W. F., 10.1080/00927879708825957, Commun. Algebra 25 (1997), 1845-1859. (1997) Zbl0884.13013MR1446134DOI10.1080/00927879708825957
- Keigher, W. F., Pritchard, F. L., 10.1016/S0022-4049(98)00099-1, J. Pure Appl. Algebra 146 (2000), 291-304. (2000) Zbl0978.12007MR1742345DOI10.1016/S0022-4049(98)00099-1
- Krempa, J., Some examples of reduced rings, Algebra Colloq. 3 (1996), 289-300. (1996) Zbl0859.16019MR1422968
- Leroy, A., Matczuk, J., 10.1016/j.jpaa.2015.06.015, J. Pure Appl. Algebra 220 (2016), 335-345. (2016) Zbl1334.16019MR3393464DOI10.1016/j.jpaa.2015.06.015
- Liu, Z., Zhao, R., 10.1017/S0017089506003016, Glasg. Math. J. 48 (2006), 217-229. (2006) Zbl1110.16003MR2256973DOI10.1017/S0017089506003016
- McCoy, N. H., 10.1080/00029890.1942.11991226, Am. Math. Mon. 49 (1942), 286-295. (1942) Zbl0060.07703MR0006150DOI10.1080/00029890.1942.11991226
- McCoy, N. H., 10.1080/00029890.1957.11988927, Am. Math. Mon. 64 (1957), 28-29. (1957) Zbl0077.25903MR0082486DOI10.1080/00029890.1957.11988927
- Paykan, K., 10.1007/s12215-016-0245-y, Rend. Circ. Mat. Palermo (2) 65 (2016), 451-458. (2016) Zbl1353.16046MR3571322DOI10.1007/s12215-016-0245-y
- Paykan, K., 10.1007/s11587-016-0305-9, Ric. Mat. 66 (2017), 383-393. (2017) Zbl1394.16050MR3715907DOI10.1007/s11587-016-0305-9
- Paykan, K., 10.1007/s40574-016-0098-5, Bull. Unione Mat. Ital. 10 (2017), 607-616. (2017) Zbl1381.16042MR3736710DOI10.1007/s40574-016-0098-5
- Rege, M. B., Chhawchharia, S., 10.3792/pjaa.73.14, Proc. Japan Acad., Ser. A 73 (1997), 14-17. (1997) Zbl0960.16038MR1442245DOI10.3792/pjaa.73.14
- Sharma, R. K., Singh, A. B., 10.18311/jims/2018/20986, J. Indian Math. Soc., New Ser. 85 (2018), 434-448. (2018) Zbl1463.16047MR3816380DOI10.18311/jims/2018/20986
- Sharma, R. K., Singh, A. B., Zip property of skew Hurwitz series rings and modules, Serdica Math. J. 45 (2019), 35-54. (2019) MR3971446
- Sharma, R. K., Singh, A. B., 10.46793/KgJMat2304.511S, Kragujevac J. Math. 47 (2023), 511-521. (2023) MR4654453DOI10.46793/KgJMat2304.511S
- Singh, A. B., Dixit, V. N., Unification of extensions of zip rings, Acta Univ. Sapientiae, Math. 4 (2012), 168-181. (2012) Zbl1295.16015MR3123260
- Stenström, B., 10.1007/978-3-642-66066-5, Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). (1975) Zbl0296.16001MR0389953DOI10.1007/978-3-642-66066-5
- Taft, E. J., Hurwitz invertibility of linearly recursive sequences, Combinatorics, Graph Theory, and Computing Congressus Numerantium 73. Utilitas Mathematica, Winnipeg (1990), 37-40. (1990) Zbl0694.16006MR1041834
- Tominaga, H., On -unital rings, Math. J. Okayama Univ. 18 (1976), 117-134. (1976) Zbl0335.16020MR0453801
- Zelmanowitz, J. M., 10.1090/S0002-9939-1976-0419512-6, Proc. Am. Math. Soc. 57 (1976), 213-216. (1976) Zbl0333.16014MR0419512DOI10.1090/S0002-9939-1976-0419512-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.