On a theorem of McCoy

Rajendra K. Sharma; Amit B. Singh

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 1, page 27-38
  • ISSN: 0862-7959

Abstract

top
We study McCoy’s theorem to the skew Hurwitz series ring ( HR , ω ) for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring R satisfies McCoy’s theorem of skew Hurwitz series.

How to cite

top

Sharma, Rajendra K., and Singh, Amit B.. "On a theorem of McCoy." Mathematica Bohemica 149.1 (2024): 27-38. <http://eudml.org/doc/299229>.

@article{Sharma2024,
abstract = {We study McCoy’s theorem to the skew Hurwitz series ring $(\{\rm HR\}, \omega )$ for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring $R$ satisfies McCoy’s theorem of skew Hurwitz series.},
author = {Sharma, Rajendra K., Singh, Amit B.},
journal = {Mathematica Bohemica},
keywords = {skew Hurwitz series ring; $\omega $-compatible ring; skew Hurwitz serieswise; quasi-Armendariz rings; zip ring; APP ring},
language = {eng},
number = {1},
pages = {27-38},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a theorem of McCoy},
url = {http://eudml.org/doc/299229},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Sharma, Rajendra K.
AU - Singh, Amit B.
TI - On a theorem of McCoy
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 1
SP - 27
EP - 38
AB - We study McCoy’s theorem to the skew Hurwitz series ring $({\rm HR}, \omega )$ for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring $R$ satisfies McCoy’s theorem of skew Hurwitz series.
LA - eng
KW - skew Hurwitz series ring; $\omega $-compatible ring; skew Hurwitz serieswise; quasi-Armendariz rings; zip ring; APP ring
UR - http://eudml.org/doc/299229
ER -

References

top
  1. Ahmadi, M., Moussavi, A., Nourozi, V., 10.1142/S1793557114500363, Asian-Eur. J. Math. 7 (2014), Article ID 1450036, 19 pages. (2014) Zbl1308.16033MR3257511DOI10.1142/S1793557114500363
  2. Annin, S., 10.1142/S0219498804000782, J. Algera Appl. 3 (2004), 193-205. (2004) Zbl1060.16029MR2069261DOI10.1142/S0219498804000782
  3. Armendariz, E. P., 10.1017/S1446788700029190, J. Aust. Math. Soc. 18 (1974), 470-473. (1974) Zbl0292.16009MR0366979DOI10.1017/S1446788700029190
  4. Beachy, J. A., Blair, W. D., 10.2140/pjm.1975.58.1, Pac. J. Math. 58 (1975), 1-13. (1975) Zbl0309.16004MR0393092DOI10.2140/pjm.1975.58.1
  5. Benhissi, A., Koja, F., 10.1007/s11587-012-0128-2, Ric. Mat. 61 (2012), 255-273. (2012) Zbl1318.13034MR3000659DOI10.1007/s11587-012-0128-2
  6. Birkenmeier, G. F., Kim, J. Y., Park, J. K., 10.1090/conm/259, Algebra and Its Applications Contemporary Mathematics 259. AMS, Providence (2000), 67-92. (2000) Zbl0974.16006MR1778495DOI10.1090/conm/259
  7. Cedó, F., 10.1080/00927879108824242, Commun. Algebra 19 (1991), 1983-1991. (1991) Zbl0733.16007MR1121118DOI10.1080/00927879108824242
  8. Cortes, W., 10.1155/2008/496720, Int. J. Math. Math. Sci. 2008 (2008), Article ID 496720, 9 pages. (2008) Zbl1159.16021MR2393011DOI10.1155/2008/496720
  9. Faith, C., 10.5565/PUBLMAT_33289_09, Publ. Mat., Barc. 33 (1989), 329-338. (1989) Zbl0702.16015MR1030970DOI10.5565/PUBLMAT_33289_09
  10. Faith, C., 10.1080/00927879108824235, Commun. Algebra 19 (1991), 1867-1892. (1991) Zbl0729.16015MR1121111DOI10.1080/00927879108824235
  11. Fields, D. E., 10.1090/S0002-9939-1971-0271100-6, Proc. Am. Math. Soc. 27 (1971), 427-433. (1971) Zbl0219.13023MR0271100DOI10.1090/S0002-9939-1971-0271100-6
  12. Fliess, M., 10.24033/bsmf.1777, Bull. Soc. Math. Fr. 102 (1974), 181-191 French. (1974) Zbl0313.13021MR0354647DOI10.24033/bsmf.1777
  13. Gilmer, R., Grams, A., Parker, T., 10.1515/crll.1975.278-279.145, J. Reine Angew. Math. 278/279 (1975), 145-164. (1975) Zbl0309.13009MR0387274DOI10.1515/crll.1975.278-279.145
  14. Hashemi, E., Moussavi, A., 10.1007/s10474-005-0191-1, Acta. Math. Hung. 107 (2005), 207-224. (2005) Zbl1081.16032MR2148584DOI10.1007/s10474-005-0191-1
  15. Hassanein, A. M., Clean rings of skew Hurwitz series, Matematiche 62 (2007), 47-54. (2007) Zbl1150.16029MR2389111
  16. Hirano, Y., 10.1016/S0022-4049(01)00053-6, J. Pure Appl. Algebra 168 (2002), 45-52. (2002) Zbl1007.16020MR1879930DOI10.1016/S0022-4049(01)00053-6
  17. Hong, C. Y., Kim, N. K., Kwak, T. K., Lee, Y., 10.1016/j.jpaa.2004.08.025, J. Pure Appl. Algebra 195 (2005), 231-242. (2005) Zbl1071.16020MR2114273DOI10.1016/j.jpaa.2004.08.025
  18. Hong, C. Y., Kim, N. K., Lee, Y., 10.1017/S0017089509990243, Glasg. Math. J. 52 (2010), 155-159. (2010) Zbl1195.16026MR2587825DOI10.1017/S0017089509990243
  19. Jones, L. G., Weiner, L., 10.1080/00029890.1952.11988133, Am. Math. Mon. 59 (1952), 336-337. (1952) MR0048481DOI10.1080/00029890.1952.11988133
  20. Keigher, W. F., 10.2140/pjm.1975.59.99, Pac. J. Math. 59 (1975), 99-112. (1975) Zbl0327.12104MR0392957DOI10.2140/pjm.1975.59.99
  21. Keigher, W. F., 10.1080/00927879708825957, Commun. Algebra 25 (1997), 1845-1859. (1997) Zbl0884.13013MR1446134DOI10.1080/00927879708825957
  22. Keigher, W. F., Pritchard, F. L., 10.1016/S0022-4049(98)00099-1, J. Pure Appl. Algebra 146 (2000), 291-304. (2000) Zbl0978.12007MR1742345DOI10.1016/S0022-4049(98)00099-1
  23. Krempa, J., Some examples of reduced rings, Algebra Colloq. 3 (1996), 289-300. (1996) Zbl0859.16019MR1422968
  24. Leroy, A., Matczuk, J., 10.1016/j.jpaa.2015.06.015, J. Pure Appl. Algebra 220 (2016), 335-345. (2016) Zbl1334.16019MR3393464DOI10.1016/j.jpaa.2015.06.015
  25. Liu, Z., Zhao, R., 10.1017/S0017089506003016, Glasg. Math. J. 48 (2006), 217-229. (2006) Zbl1110.16003MR2256973DOI10.1017/S0017089506003016
  26. McCoy, N. H., 10.1080/00029890.1942.11991226, Am. Math. Mon. 49 (1942), 286-295. (1942) Zbl0060.07703MR0006150DOI10.1080/00029890.1942.11991226
  27. McCoy, N. H., 10.1080/00029890.1957.11988927, Am. Math. Mon. 64 (1957), 28-29. (1957) Zbl0077.25903MR0082486DOI10.1080/00029890.1957.11988927
  28. Paykan, K., 10.1007/s12215-016-0245-y, Rend. Circ. Mat. Palermo (2) 65 (2016), 451-458. (2016) Zbl1353.16046MR3571322DOI10.1007/s12215-016-0245-y
  29. Paykan, K., 10.1007/s11587-016-0305-9, Ric. Mat. 66 (2017), 383-393. (2017) Zbl1394.16050MR3715907DOI10.1007/s11587-016-0305-9
  30. Paykan, K., 10.1007/s40574-016-0098-5, Bull. Unione Mat. Ital. 10 (2017), 607-616. (2017) Zbl1381.16042MR3736710DOI10.1007/s40574-016-0098-5
  31. Rege, M. B., Chhawchharia, S., 10.3792/pjaa.73.14, Proc. Japan Acad., Ser. A 73 (1997), 14-17. (1997) Zbl0960.16038MR1442245DOI10.3792/pjaa.73.14
  32. Sharma, R. K., Singh, A. B., 10.18311/jims/2018/20986, J. Indian Math. Soc., New Ser. 85 (2018), 434-448. (2018) Zbl1463.16047MR3816380DOI10.18311/jims/2018/20986
  33. Sharma, R. K., Singh, A. B., Zip property of skew Hurwitz series rings and modules, Serdica Math. J. 45 (2019), 35-54. (2019) MR3971446
  34. Sharma, R. K., Singh, A. B., 10.46793/KgJMat2304.511S, Kragujevac J. Math. 47 (2023), 511-521. (2023) MR4654453DOI10.46793/KgJMat2304.511S
  35. Singh, A. B., Dixit, V. N., Unification of extensions of zip rings, Acta Univ. Sapientiae, Math. 4 (2012), 168-181. (2012) Zbl1295.16015MR3123260
  36. Stenström, B., 10.1007/978-3-642-66066-5, Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). (1975) Zbl0296.16001MR0389953DOI10.1007/978-3-642-66066-5
  37. Taft, E. J., Hurwitz invertibility of linearly recursive sequences, Combinatorics, Graph Theory, and Computing Congressus Numerantium 73. Utilitas Mathematica, Winnipeg (1990), 37-40. (1990) Zbl0694.16006MR1041834
  38. Tominaga, H., On s -unital rings, Math. J. Okayama Univ. 18 (1976), 117-134. (1976) Zbl0335.16020MR0453801
  39. Zelmanowitz, J. M., 10.1090/S0002-9939-1976-0419512-6, Proc. Am. Math. Soc. 57 (1976), 213-216. (1976) Zbl0333.16014MR0419512DOI10.1090/S0002-9939-1976-0419512-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.