Parametric representations of BiHom-Hopf algebras

Xiaohui Zhang; Wei Wang; Juzhen Chen

Czechoslovak Mathematical Journal (2024)

  • Issue: 1, page 45-86
  • ISSN: 0011-4642

Abstract

top
The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new n -monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.

How to cite

top

Zhang, Xiaohui, Wang, Wei, and Chen, Juzhen. "Parametric representations of BiHom-Hopf algebras." Czechoslovak Mathematical Journal (2024): 45-86. <http://eudml.org/doc/299231>.

@article{Zhang2024,
abstract = {The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new $n$-monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.},
author = {Zhang, Xiaohui, Wang, Wei, Chen, Juzhen},
journal = {Czechoslovak Mathematical Journal},
keywords = {BiHom-Hopf algebra; BiHom-Yang-Baxter equation; $n$-monoidal category; Drinfeld double},
language = {eng},
number = {1},
pages = {45-86},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Parametric representations of BiHom-Hopf algebras},
url = {http://eudml.org/doc/299231},
year = {2024},
}

TY - JOUR
AU - Zhang, Xiaohui
AU - Wang, Wei
AU - Chen, Juzhen
TI - Parametric representations of BiHom-Hopf algebras
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 45
EP - 86
AB - The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new $n$-monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.
LA - eng
KW - BiHom-Hopf algebra; BiHom-Yang-Baxter equation; $n$-monoidal category; Drinfeld double
UR - http://eudml.org/doc/299231
ER -

References

top
  1. Aguiar, M., Mahajan, S., 10.1090/crmm/029, CRM Monograph Series 29. AMS, Providence (2010). (2010) Zbl1209.18002MR2724388DOI10.1090/crmm/029
  2. Balteanu, C., Fiedorowicz, Z., Schwänzl, R., Vogt, R., 10.1016/S0001-8708(03)00065-3, Adv. Math. 176 (2003), 277-349. (2003) Zbl1030.18006MR1982884DOI10.1016/S0001-8708(03)00065-3
  3. Caenepeel, S., Goyvaerts, I., 10.1080/00927872.2010.490800, Commun. Algebra 39 (2011), 2216-2240. (2011) Zbl1255.16032MR2813174DOI10.1080/00927872.2010.490800
  4. Caenepeel, S., Wang, D., Yin, Y., 10.1007/BF02824824, Ann. Univ. Ferrara, Nuova Ser., Sez. VII 51 (2005), 69-98. (2005) Zbl1132.16031MR2294760DOI10.1007/BF02824824
  5. Chen, Y., Zhang, L., 10.1063/1.4868964, J. Math. Phys. 55 (2014), Article ID 031702, 18 pages. (2014) Zbl1292.16022MR3221244DOI10.1063/1.4868964
  6. Fang, X.-L., Liu, W., 10.1070/SM8863, Sb. Math. 209 (2018), 901-918 translation from Mat. Sb. 209 2018 128-145. (2018) Zbl1442.16035MR3807910DOI10.1070/SM8863
  7. Forcey, S., Siehler, J., Sowers, E. S., Operads in iterated monoidal categories, J. Homotopy Relat. Struct. 2 (2007), 1-43. (2007) Zbl1135.18004MR2326931
  8. Graziani, G., Makhlouf, A., Menini, C., Panaite, F., 10.3842/SIGMA.2015.086, SIGMA, Symmetry Integrability Geom. Methods Appl. 11 (2015), Article ID 086, 34 pages. (2015) Zbl1358.17006MR3415909DOI10.3842/SIGMA.2015.086
  9. Guo, S., Zhang, X., Wang, S., 10.4064/cm6509-12-2015, Colloq. Math. 143 (2016), 79-103. (2016) Zbl1367.16032MR3459536DOI10.4064/cm6509-12-2015
  10. Guo, S., Zhang, X., Wang, S., 10.1016/j.geomphys.2018.06.011, J. Geom. Phys. 132 (2018), 460-472. (2018) Zbl1442.17023MR3836793DOI10.1016/j.geomphys.2018.06.011
  11. Hartwig, J. T., Larsson, D., Silvestrov, S. D., 10.1016/j.jalgebra.2005.07.036, J. Algebra 295 (2006), 314-361. (2006) Zbl1138.17012MR2194957DOI10.1016/j.jalgebra.2005.07.036
  12. Hu, N., q -Witt algebras, q -Lie algebras, q -holomorph structure and representations, Algebra Colloq. 6 (1999), 51-70. (1999) Zbl0943.17007MR1680657
  13. Joyal, A., Street, S., 10.1016/0022-4049(91)90039-5, J. Pure Appl. Algebra 71 (1991), 43-51. (1991) Zbl0726.18004MR1107651DOI10.1016/0022-4049(91)90039-5
  14. Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155. Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
  15. Li, J., Chen, L., Sun, B., 10.15672/hjms.2018.549, Hacet. J. Math. Stat. 48 (2019), 785-799. (2019) Zbl1488.17026MR3974585DOI10.15672/hjms.2018.549
  16. Liu, L., Makhlouf, A., Menini, C., Panaite, F., 10.4153/CMB-2018-028-8, Can. Math. Bull. 62 (2019), 355-372. (2019) Zbl1460.17027MR3952524DOI10.4153/CMB-2018-028-8
  17. Lu, D., Zhang, X., 10.1142/S0219498818501335, J. Algebra Appl. 17 (2018), Article ID 1850133, 19 pages. (2018) Zbl1430.16030MR3813706DOI10.1142/S0219498818501335
  18. Majid, S., Representations, duals and quantum doubles of monoidal categories, Rend. Circ. Mat. Palermo, II. Ser., Suppl. 26 (1991), 197-206. (1991) Zbl0762.18005MR1151906
  19. Majid, S., 10.1023/A:1007450123281, Lett. Math. Phys. 45 (1998), 1-9. (1998) Zbl0940.16018MR1631648DOI10.1023/A:1007450123281
  20. Makhlouf, A., Panaite, F., 10.1063/1.4858875, J. Math. Phys. 55 (2014), Article ID 013501, 17 pages. (2014) Zbl1292.16025MR3390433DOI10.1063/1.4858875
  21. Makhlouf, A., Panaite, F., 10.1016/j.jalgebra.2015.05.032, J. Algebra 441 (2015), 314-343. (2015) Zbl1332.16024MR3391930DOI10.1016/j.jalgebra.2015.05.032
  22. Makhlouf, A., Silvestrov, S. D., 10.4303/jglta/S070206, J. Gen. Lie Theory Appl. 2 (2008), 51-64. (2008) Zbl1184.17002MR2399415DOI10.4303/jglta/S070206
  23. Makhlouf, A., Silvestrov, S., 10.1007/978-3-540-85332-9_17, Generalized Lie Theory in Mathematics, Physics and Beyond Springer, Berlin (2009), 189-206. (2009) Zbl1173.16019MR2509148DOI10.1007/978-3-540-85332-9_17
  24. Makhlouf, A., Silvestrov, S., 10.1142/S0219498810004117, J. Algebra Appl. 9 (2010), 553-589. (2010) Zbl1259.16041MR2718646DOI10.1142/S0219498810004117
  25. Montgomery, S., 10.1090/cbms/082, Regional Conference Series in Mathematics 82. AMS, Providence (1993). (1993) Zbl0793.16029MR1243637DOI10.1090/cbms/082
  26. Nenciu, A., 10.21099/tkbjm/1496164389, Tsukaba J. Math. 26 (2002), 189-204. (2002) Zbl1029.16023MR1915985DOI10.21099/tkbjm/1496164389
  27. Yau, D., 10.1088/1751-8113/42/16/165202, J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. (2009) Zbl1179.17001MR2539278DOI10.1088/1751-8113/42/16/165202
  28. Yau, D., 10.1088/1751-8113/45/6/065203, J. Phys. A, Math. Theor. 45 (2012), Article ID 065203, 23 pages. (2012) Zbl1241.81110MR2881054DOI10.1088/1751-8113/45/6/065203
  29. Zhang, X., Dong, L., 10.1017/S0017089517000088, Glasg. Math. J. 60 (2018), 231-251. (2018) Zbl1443.18010MR3733844DOI10.1017/S0017089517000088
  30. Zhang, X., Guo, S., Wang, S., 10.1007/s00006-019-0949-0, Adv. Appl. Clifford Algebr. 29 (2019), Article ID 36, 26 pages. (2019) Zbl1454.17010MR3923497DOI10.1007/s00006-019-0949-0
  31. Zhang, X., Wang, D., 10.1007/s10468-019-09888-2, Algebr. Represent. Theor. 23 (2020), 1355-1385. (2020) Zbl1455.18004MR4125582DOI10.1007/s10468-019-09888-2
  32. Zhang, X., Wang, W., Zhao, X., 10.4064/cm7359-4-2018, Colloq. Math. 156 (2019), 199-228. (2019) Zbl1446.16039MR3925088DOI10.4064/cm7359-4-2018
  33. Zhao, X., Zhang, X., 10.4064/cm142-1-3, Colloq. Math. 142 (2016), 61-81. (2016) Zbl1375.16016MR3417744DOI10.4064/cm142-1-3
  34. Zhu, H., Liu, G., Yang, T., 10.1142/S0219498820500589, J. Algebra Appl. 19 (2020), Article ID 2050058, 16 pages. (2020) Zbl1444.16047MR4082442DOI10.1142/S0219498820500589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.