Parametric representations of BiHom-Hopf algebras
Xiaohui Zhang; Wei Wang; Juzhen Chen
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 1, page 45-86
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Xiaohui, Wang, Wei, and Chen, Juzhen. "Parametric representations of BiHom-Hopf algebras." Czechoslovak Mathematical Journal 74.1 (2024): 45-86. <http://eudml.org/doc/299231>.
@article{Zhang2024,
abstract = {The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new $n$-monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.},
author = {Zhang, Xiaohui, Wang, Wei, Chen, Juzhen},
journal = {Czechoslovak Mathematical Journal},
keywords = {BiHom-Hopf algebra; BiHom-Yang-Baxter equation; $n$-monoidal category; Drinfeld double},
language = {eng},
number = {1},
pages = {45-86},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Parametric representations of BiHom-Hopf algebras},
url = {http://eudml.org/doc/299231},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Zhang, Xiaohui
AU - Wang, Wei
AU - Chen, Juzhen
TI - Parametric representations of BiHom-Hopf algebras
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 1
SP - 45
EP - 86
AB - The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new $n$-monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.
LA - eng
KW - BiHom-Hopf algebra; BiHom-Yang-Baxter equation; $n$-monoidal category; Drinfeld double
UR - http://eudml.org/doc/299231
ER -
References
top- Aguiar, M., Mahajan, S., 10.1090/crmm/029, CRM Monograph Series 29. AMS, Providence (2010). (2010) Zbl1209.18002MR2724388DOI10.1090/crmm/029
- Balteanu, C., Fiedorowicz, Z., Schwänzl, R., Vogt, R., 10.1016/S0001-8708(03)00065-3, Adv. Math. 176 (2003), 277-349. (2003) Zbl1030.18006MR1982884DOI10.1016/S0001-8708(03)00065-3
- Caenepeel, S., Goyvaerts, I., 10.1080/00927872.2010.490800, Commun. Algebra 39 (2011), 2216-2240. (2011) Zbl1255.16032MR2813174DOI10.1080/00927872.2010.490800
- Caenepeel, S., Wang, D., Yin, Y., 10.1007/BF02824824, Ann. Univ. Ferrara, Nuova Ser., Sez. VII 51 (2005), 69-98. (2005) Zbl1132.16031MR2294760DOI10.1007/BF02824824
- Chen, Y., Zhang, L., 10.1063/1.4868964, J. Math. Phys. 55 (2014), Article ID 031702, 18 pages. (2014) Zbl1292.16022MR3221244DOI10.1063/1.4868964
- Fang, X.-L., Liu, W., 10.1070/SM8863, Sb. Math. 209 (2018), 901-918 translation from Mat. Sb. 209 2018 128-145. (2018) Zbl1442.16035MR3807910DOI10.1070/SM8863
- Forcey, S., Siehler, J., Sowers, E. S., Operads in iterated monoidal categories, J. Homotopy Relat. Struct. 2 (2007), 1-43. (2007) Zbl1135.18004MR2326931
- Graziani, G., Makhlouf, A., Menini, C., Panaite, F., 10.3842/SIGMA.2015.086, SIGMA, Symmetry Integrability Geom. Methods Appl. 11 (2015), Article ID 086, 34 pages. (2015) Zbl1358.17006MR3415909DOI10.3842/SIGMA.2015.086
- Guo, S., Zhang, X., Wang, S., 10.4064/cm6509-12-2015, Colloq. Math. 143 (2016), 79-103. (2016) Zbl1367.16032MR3459536DOI10.4064/cm6509-12-2015
- Guo, S., Zhang, X., Wang, S., 10.1016/j.geomphys.2018.06.011, J. Geom. Phys. 132 (2018), 460-472. (2018) Zbl1442.17023MR3836793DOI10.1016/j.geomphys.2018.06.011
- Hartwig, J. T., Larsson, D., Silvestrov, S. D., 10.1016/j.jalgebra.2005.07.036, J. Algebra 295 (2006), 314-361. (2006) Zbl1138.17012MR2194957DOI10.1016/j.jalgebra.2005.07.036
- Hu, N., -Witt algebras, -Lie algebras, -holomorph structure and representations, Algebra Colloq. 6 (1999), 51-70. (1999) Zbl0943.17007MR1680657
- Joyal, A., Street, S., 10.1016/0022-4049(91)90039-5, J. Pure Appl. Algebra 71 (1991), 43-51. (1991) Zbl0726.18004MR1107651DOI10.1016/0022-4049(91)90039-5
- Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155. Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
- Li, J., Chen, L., Sun, B., 10.15672/hjms.2018.549, Hacet. J. Math. Stat. 48 (2019), 785-799. (2019) Zbl1488.17026MR3974585DOI10.15672/hjms.2018.549
- Liu, L., Makhlouf, A., Menini, C., Panaite, F., 10.4153/CMB-2018-028-8, Can. Math. Bull. 62 (2019), 355-372. (2019) Zbl1460.17027MR3952524DOI10.4153/CMB-2018-028-8
- Lu, D., Zhang, X., 10.1142/S0219498818501335, J. Algebra Appl. 17 (2018), Article ID 1850133, 19 pages. (2018) Zbl1430.16030MR3813706DOI10.1142/S0219498818501335
- Majid, S., Representations, duals and quantum doubles of monoidal categories, Rend. Circ. Mat. Palermo, II. Ser., Suppl. 26 (1991), 197-206. (1991) Zbl0762.18005MR1151906
- Majid, S., 10.1023/A:1007450123281, Lett. Math. Phys. 45 (1998), 1-9. (1998) Zbl0940.16018MR1631648DOI10.1023/A:1007450123281
- Makhlouf, A., Panaite, F., 10.1063/1.4858875, J. Math. Phys. 55 (2014), Article ID 013501, 17 pages. (2014) Zbl1292.16025MR3390433DOI10.1063/1.4858875
- Makhlouf, A., Panaite, F., 10.1016/j.jalgebra.2015.05.032, J. Algebra 441 (2015), 314-343. (2015) Zbl1332.16024MR3391930DOI10.1016/j.jalgebra.2015.05.032
- Makhlouf, A., Silvestrov, S. D., 10.4303/jglta/S070206, J. Gen. Lie Theory Appl. 2 (2008), 51-64. (2008) Zbl1184.17002MR2399415DOI10.4303/jglta/S070206
- Makhlouf, A., Silvestrov, S., 10.1007/978-3-540-85332-9_17, Generalized Lie Theory in Mathematics, Physics and Beyond Springer, Berlin (2009), 189-206. (2009) Zbl1173.16019MR2509148DOI10.1007/978-3-540-85332-9_17
- Makhlouf, A., Silvestrov, S., 10.1142/S0219498810004117, J. Algebra Appl. 9 (2010), 553-589. (2010) Zbl1259.16041MR2718646DOI10.1142/S0219498810004117
- Montgomery, S., 10.1090/cbms/082, Regional Conference Series in Mathematics 82. AMS, Providence (1993). (1993) Zbl0793.16029MR1243637DOI10.1090/cbms/082
- Nenciu, A., 10.21099/tkbjm/1496164389, Tsukaba J. Math. 26 (2002), 189-204. (2002) Zbl1029.16023MR1915985DOI10.21099/tkbjm/1496164389
- Yau, D., 10.1088/1751-8113/42/16/165202, J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. (2009) Zbl1179.17001MR2539278DOI10.1088/1751-8113/42/16/165202
- Yau, D., 10.1088/1751-8113/45/6/065203, J. Phys. A, Math. Theor. 45 (2012), Article ID 065203, 23 pages. (2012) Zbl1241.81110MR2881054DOI10.1088/1751-8113/45/6/065203
- Zhang, X., Dong, L., 10.1017/S0017089517000088, Glasg. Math. J. 60 (2018), 231-251. (2018) Zbl1443.18010MR3733844DOI10.1017/S0017089517000088
- Zhang, X., Guo, S., Wang, S., 10.1007/s00006-019-0949-0, Adv. Appl. Clifford Algebr. 29 (2019), Article ID 36, 26 pages. (2019) Zbl1454.17010MR3923497DOI10.1007/s00006-019-0949-0
- Zhang, X., Wang, D., 10.1007/s10468-019-09888-2, Algebr. Represent. Theor. 23 (2020), 1355-1385. (2020) Zbl1455.18004MR4125582DOI10.1007/s10468-019-09888-2
- Zhang, X., Wang, W., Zhao, X., 10.4064/cm7359-4-2018, Colloq. Math. 156 (2019), 199-228. (2019) Zbl1446.16039MR3925088DOI10.4064/cm7359-4-2018
- Zhao, X., Zhang, X., 10.4064/cm142-1-3, Colloq. Math. 142 (2016), 61-81. (2016) Zbl1375.16016MR3417744DOI10.4064/cm142-1-3
- Zhu, H., Liu, G., Yang, T., 10.1142/S0219498820500589, J. Algebra Appl. 19 (2020), Article ID 2050058, 16 pages. (2020) Zbl1444.16047MR4082442DOI10.1142/S0219498820500589
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.