Products of topological spaces and families of filters
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 3, page 373-394
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLipparini, Paolo. "Products of topological spaces and families of filters." Commentationes Mathematicae Universitatis Carolinae 64.3 (2023): 373-394. <http://eudml.org/doc/299236>.
@article{Lipparini2023,
abstract = {We show that, under suitably general formulations, covering properties, accumulation properties and filter convergence are all equivalent notions. This general correspondence is exemplified in the study of products. We prove that a product is Lindelöf if and only if all subproducts by $\le \omega _1 $ factors are Lindelöf. Parallel results are obtained for final $ \omega _n$-compactness, $[ \lambda , \mu ]$-compactness, the Menger and the Rothberger properties.},
author = {Lipparini, Paolo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {filter convergence; ultrafilter; product; subproduct; sequential compactness; sequencewise $\mathcal \{P\}$-compactness; Lindelöf property; final $\lambda $-compactness; $[ \mu , \lambda ]$-compactness; Menger property; Rothberger property},
language = {eng},
number = {3},
pages = {373-394},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Products of topological spaces and families of filters},
url = {http://eudml.org/doc/299236},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Lipparini, Paolo
TI - Products of topological spaces and families of filters
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 3
SP - 373
EP - 394
AB - We show that, under suitably general formulations, covering properties, accumulation properties and filter convergence are all equivalent notions. This general correspondence is exemplified in the study of products. We prove that a product is Lindelöf if and only if all subproducts by $\le \omega _1 $ factors are Lindelöf. Parallel results are obtained for final $ \omega _n$-compactness, $[ \lambda , \mu ]$-compactness, the Menger and the Rothberger properties.
LA - eng
KW - filter convergence; ultrafilter; product; subproduct; sequential compactness; sequencewise $\mathcal {P}$-compactness; Lindelöf property; final $\lambda $-compactness; $[ \mu , \lambda ]$-compactness; Menger property; Rothberger property
UR - http://eudml.org/doc/299236
ER -
References
top- Blass A., Combinatorial cardinal characteristics of the continuum, in Handbook of Set Theory, Springer, Dordrecht, 2010, pages 395–489. MR2768685
- Booth D., 10.4064/fm-85-2-99-102, Fund. Math. 85 (1974), no. 2, 99–102. MR0367926DOI10.4064/fm-85-2-99-102
- Brandhorst S., Tychonoff-Like Theorems and Hypercompact Topological Spaces, Bachelor's Thesis, Leibniz Universität, Hannover, 2013.
- Brandhorst S., Erné M., Tychonoff-like product theorems for local topological properties, Topology Proc. 45 (2015), 121–138. MR3231433
- Caicedo X., The abstract compactness theorem revisited, in Logic and Foundations of Mathematics, Synthese Lib., 280, Kluwer Acad. Publ., Dordrecht, 1999, pages 131–141. Zbl0955.03044MR1739865
- Comfort W. W., Article Review: Some applications of ultrafilters in topology, MathSciNet Mathematical Reviews 52 (1976), # 1633, 227. MR0451187
- van Douwen E. K., The integers and topology, in Handbook of Set-theoretic Topology, North-Holland Publishing, Amsterdam, 1984, pages 111–167. Zbl0561.54004MR0776622
- García-Ferreira S., On FU()-spaces and -sequential spaces, Comment. Math. Univ. Carolin. 32 (1991), no. 1, 161–171. Zbl0789.54032MR1118299
- García-Ferreira S., Kočinac L., Convergence with respect to ultrafilters: a survey, Filomat 10 (1996), 1–32. MR1448484
- Gierz G., Hofmann K. H., Keimel K., Lawson J. D., Mislove M., Scott D. S., Continuous Lattices and Domains, Encyclopedia of Mathematics and Its Applications, 93, Cambridge University Press, Cambridge, 2003. Zbl1088.06001MR1975381
- Ginsburg J., Saks V., 10.2140/pjm.1975.57.403, Pacific J. Math. 57 (1975), no. 2, 403–418. Zbl0288.54020MR0380736DOI10.2140/pjm.1975.57.403
- Goubault-Larrecq J., Non-Hausdorff Topology and Domain Theory, New Mathematical Monographs, 22, Cambridge University Press, Cambridge, 2013. MR3086734
- Kombarov A. P., Compactness and sequentiality with respect to a set of ultrafilters, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 95 (1985), no. 5, 15–18 (Russian); translation in Moscow Univ. Math. Bull. 40 (1985), no. 5, 15–18. MR0814266
- Lipparini P., 10.1016/j.topol.2005.04.002, Topology Appl. 153 (2006), no. 9, 1365–1382. Zbl1093.54001MR2211205DOI10.1016/j.topol.2005.04.002
- Lipparini P., A very general covering property, Comment. Math. Univ. Carolin. 53 (2012), no. 2, 281–306. MR3017260
- Lipparini P., 10.1016/j.topol.2013.07.044, Topology Appl. 160 (2013), no. 18, 2505–2513. MR3120664DOI10.1016/j.topol.2013.07.044
- Lipparini P., Topological spaces compact with respect to a set of filters, Cent. Eur. J. Math. 12 (2014), no. 7, 991–999. MR3188459
- Lipparini P., Products of sequentially compact spaces with no separability assumption, Rend. Istit. Mat. Univ. Trieste 54 (2022), Art. No. 8, 9 pages. MR4595165
- Lipparini P., Products of sequentially compact spaces and compactness with respect to a set of filters, available at arXiv:1303.0815v5 [math.GN] (2022), 32 pages. MR3188459
- Mycielski I., Two remarks on Tychonoff's product theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math., Astronom. Phys. 12 (1964), 439–441. MR0215731
- Nyikos P., Sequential extensions of countably compact spaces, Topol. Proc. 31 (2007), no. 2, 651–665. MR2476634
- Saks V., 10.1090/S0002-9947-1978-0492291-9, Trans. Amer. Math. Soc. 241 (1978), 79–97. MR0492291DOI10.1090/S0002-9947-1978-0492291-9
- Scarborough C. T., Stone A. H., 10.1090/S0002-9947-1966-0203679-7, Trans. Amer. Math. Soc. 124 (1966), 131–147. MR0203679DOI10.1090/S0002-9947-1966-0203679-7
- Stephenson R. M., Jr., Initially -compact and related spaces, in Handbook of Set-theoretic Topology, North-Holland Publishing, Amsterdam, 1984, pages 603–632. Zbl0588.54025MR0776632
- Stephenson R. M., Jr., Vaughan J. E., Products of initially -compact spaces, Trans. Amer. Math. Soc. 196 (1974), 177–189. MR0425898
- Usuba T., 10.4064/fm487-7-2018, Fund. Math. 246 (2019), no. 1, 71–87. MR3937917DOI10.4064/fm487-7-2018
- Vaughan J. E., Countably compact and sequentially compact spaces, in Handbook of Set-theoretic Topology, North-Holland Publishing, Amsterdam, 1984, pages 569–602. Zbl0562.54031MR0776631
- Vickers S., Topology via Logic, Cambridge Tracts in Theoretical Computer Science, 5, Cambridge University Press, Cambridge, 1989. Zbl0922.54002MR1002193
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.