Oscillation of second-order quasilinear retarded difference equations via canonical transform
George E. Chatzarakis; Deepalakshmi Rajasekar; Saravanan Sivagandhi; Ethiraju Thandapani
Mathematica Bohemica (2024)
- Issue: 1, page 39-47
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topChatzarakis, George E., et al. "Oscillation of second-order quasilinear retarded difference equations via canonical transform." Mathematica Bohemica (2024): 39-47. <http://eudml.org/doc/299238>.
@article{Chatzarakis2024,
abstract = {We study the oscillatory behavior of the second-order quasi-linear retarded difference equation \[ \Delta (p(n)(\Delta y(n))^\alpha )+\eta (n) y^\beta (n- k)=0 \]
under the condition $\sum _\{n=n_0\}^\infty p^\{-\frac\{1\}\{\alpha \}\}(n)<\infty $ (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.},
author = {Chatzarakis, George E., Rajasekar, Deepalakshmi, Sivagandhi, Saravanan, Thandapani, Ethiraju},
journal = {Mathematica Bohemica},
keywords = {quasi-linear; difference equation; retarded; second-order; oscillation},
language = {eng},
number = {1},
pages = {39-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation of second-order quasilinear retarded difference equations via canonical transform},
url = {http://eudml.org/doc/299238},
year = {2024},
}
TY - JOUR
AU - Chatzarakis, George E.
AU - Rajasekar, Deepalakshmi
AU - Sivagandhi, Saravanan
AU - Thandapani, Ethiraju
TI - Oscillation of second-order quasilinear retarded difference equations via canonical transform
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 39
EP - 47
AB - We study the oscillatory behavior of the second-order quasi-linear retarded difference equation \[ \Delta (p(n)(\Delta y(n))^\alpha )+\eta (n) y^\beta (n- k)=0 \]
under the condition $\sum _{n=n_0}^\infty p^{-\frac{1}{\alpha }}(n)<\infty $ (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.
LA - eng
KW - quasi-linear; difference equation; retarded; second-order; oscillation
UR - http://eudml.org/doc/299238
ER -
References
top- Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D., 10.1155/9789775945198, Hindwai, New York (2005). (2005) Zbl1084.39001MR2179948DOI10.1155/9789775945198
- Bolat, Y., Alzabut, J. O., On the oscillation of higher-order half-linear delay difference equations, Appl. Maths. Inf. Sci. 6 (2012), 423-427. (2012) MR2970650
- Chatzarakis, G. E., Grace, S. R., 10.12150/jnma.2021.495, J. Nonlinear Model. Anal. 3 (2021), 495-504. (2021) DOI10.12150/jnma.2021.495
- Chatzarakis, G. E., Grace, S. R., Jadlovská, I., 10.1515/ms-2021-0027, Math. Slovaca 71 (2021), 871-880. (2021) Zbl1479.39009MR4292928DOI10.1515/ms-2021-0027
- Chatzarakis, G. E., Indrajith, N., Panetsos, S. L., Thandapani, E., 10.37193/CJM.2022.02.09, Carpathian J. Math. 38 (2022), 383-390. (2022) MR4385540DOI10.37193/CJM.2022.02.09
- Chatzarakis, G. E., Indrajith, N., Thandapani, E., Vidhyaa, K. S., Oscillatory behavior of second-order non-canonical retarded difference equations, Aust. J. Math. Anal. Appl. 18 (2021), Article ID 20, 11 pages. (2021) Zbl7612942MR4371516
- El-Morshedy, H. A., Oscillation and nonoscillation criteria for half-linear second order difference equations, Dyn. Syst. Appl. 15 (2006), 429-450. (2006) MR2367656
- Grace, S. R., Agarwal, R. P., Bohner, M., O'Regan, D., 10.1016/j.cnsns.2009.01.003, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3463-3471. (2009) Zbl1221.34083MR2502411DOI10.1016/j.cnsns.2009.01.003
- Kanagasabapathi, R., Selvarangam, S., Graef, J. R., Thandapani, E., 10.1007/s00009-021-01920-4, Mediterr. J. Math. 18 (2021), Article ID 248, 14 pages. (2021) Zbl1477.39004MR4330445DOI10.1007/s00009-021-01920-4
- Saker, S. H., 10.4134/BKMS.2003.40.3.489, Bull. Korean Math. Soc. 40 (2003), 489-501. (2003) Zbl1035.39008MR1996857DOI10.4134/BKMS.2003.40.3.489
- Sakar, S. H., 10.1023/B:MAHU.0000010821.30713.be, Period. Math. Hung. 47 (2003), 201-213. (2003) Zbl1050.39019MR2025623DOI10.1023/B:MAHU.0000010821.30713.be
- Srinivasan, R., Saravanan, S., Graef, J. R., Thandapani, E., 10.1515/msds-2022-0151, Nonauton. Dyn. Syst. 9 (2022), 163-169. (2022) Zbl1497.39008MR4471376DOI10.1515/msds-2022-0151
- Thandapani, E., Ravi, K., 10.1016/S0893-9659(99)00163-9, Appl. Math. Lett. 13 (2000), 43-49. (2000) Zbl0977.39003MR1751522DOI10.1016/S0893-9659(99)00163-9
- Thandapani, E., Ravi, K., Graef, J. R., 10.1016/S0898-1221(01)00211-5, Comput. Math. Appl. 42 (2001), 953-960. (2001) Zbl0983.39006MR1846199DOI10.1016/S0898-1221(01)00211-5
- Trench, W. F., 10.1090/S0002-9947-1974-0330632-X, Trans. Am. Math. Soc. 189 (1974), 319-327. (1974) Zbl0289.34051MR0330632DOI10.1090/S0002-9947-1974-0330632-X
- Zhang, B.-G., Cheng, S. S., Oscillation criteria and comparison theorems for delay difference equations, Fasc. Math. 25 (1995), 13-32. (1995) Zbl0830.39005MR1339622
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.