Oscillation of second-order quasilinear retarded difference equations via canonical transform

George E. Chatzarakis; Deepalakshmi Rajasekar; Saravanan Sivagandhi; Ethiraju Thandapani

Mathematica Bohemica (2024)

  • Issue: 1, page 39-47
  • ISSN: 0862-7959

Abstract

top
We study the oscillatory behavior of the second-order quasi-linear retarded difference equation Δ ( p ( n ) ( Δ y ( n ) ) α ) + η ( n ) y β ( n - k ) = 0 under the condition n = n 0 p - 1 α ( n ) < (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.

How to cite

top

Chatzarakis, George E., et al. "Oscillation of second-order quasilinear retarded difference equations via canonical transform." Mathematica Bohemica (2024): 39-47. <http://eudml.org/doc/299238>.

@article{Chatzarakis2024,
abstract = {We study the oscillatory behavior of the second-order quasi-linear retarded difference equation \[ \Delta (p(n)(\Delta y(n))^\alpha )+\eta (n) y^\beta (n- k)=0 \] under the condition $\sum _\{n=n_0\}^\infty p^\{-\frac\{1\}\{\alpha \}\}(n)<\infty $ (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.},
author = {Chatzarakis, George E., Rajasekar, Deepalakshmi, Sivagandhi, Saravanan, Thandapani, Ethiraju},
journal = {Mathematica Bohemica},
keywords = {quasi-linear; difference equation; retarded; second-order; oscillation},
language = {eng},
number = {1},
pages = {39-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation of second-order quasilinear retarded difference equations via canonical transform},
url = {http://eudml.org/doc/299238},
year = {2024},
}

TY - JOUR
AU - Chatzarakis, George E.
AU - Rajasekar, Deepalakshmi
AU - Sivagandhi, Saravanan
AU - Thandapani, Ethiraju
TI - Oscillation of second-order quasilinear retarded difference equations via canonical transform
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 39
EP - 47
AB - We study the oscillatory behavior of the second-order quasi-linear retarded difference equation \[ \Delta (p(n)(\Delta y(n))^\alpha )+\eta (n) y^\beta (n- k)=0 \] under the condition $\sum _{n=n_0}^\infty p^{-\frac{1}{\alpha }}(n)<\infty $ (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.
LA - eng
KW - quasi-linear; difference equation; retarded; second-order; oscillation
UR - http://eudml.org/doc/299238
ER -

References

top
  1. Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D., 10.1155/9789775945198, Hindwai, New York (2005). (2005) Zbl1084.39001MR2179948DOI10.1155/9789775945198
  2. Bolat, Y., Alzabut, J. O., On the oscillation of higher-order half-linear delay difference equations, Appl. Maths. Inf. Sci. 6 (2012), 423-427. (2012) MR2970650
  3. Chatzarakis, G. E., Grace, S. R., 10.12150/jnma.2021.495, J. Nonlinear Model. Anal. 3 (2021), 495-504. (2021) DOI10.12150/jnma.2021.495
  4. Chatzarakis, G. E., Grace, S. R., Jadlovská, I., 10.1515/ms-2021-0027, Math. Slovaca 71 (2021), 871-880. (2021) Zbl1479.39009MR4292928DOI10.1515/ms-2021-0027
  5. Chatzarakis, G. E., Indrajith, N., Panetsos, S. L., Thandapani, E., 10.37193/CJM.2022.02.09, Carpathian J. Math. 38 (2022), 383-390. (2022) MR4385540DOI10.37193/CJM.2022.02.09
  6. Chatzarakis, G. E., Indrajith, N., Thandapani, E., Vidhyaa, K. S., Oscillatory behavior of second-order non-canonical retarded difference equations, Aust. J. Math. Anal. Appl. 18 (2021), Article ID 20, 11 pages. (2021) Zbl7612942MR4371516
  7. El-Morshedy, H. A., Oscillation and nonoscillation criteria for half-linear second order difference equations, Dyn. Syst. Appl. 15 (2006), 429-450. (2006) MR2367656
  8. Grace, S. R., Agarwal, R. P., Bohner, M., O'Regan, D., 10.1016/j.cnsns.2009.01.003, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3463-3471. (2009) Zbl1221.34083MR2502411DOI10.1016/j.cnsns.2009.01.003
  9. Kanagasabapathi, R., Selvarangam, S., Graef, J. R., Thandapani, E., 10.1007/s00009-021-01920-4, Mediterr. J. Math. 18 (2021), Article ID 248, 14 pages. (2021) Zbl1477.39004MR4330445DOI10.1007/s00009-021-01920-4
  10. Saker, S. H., 10.4134/BKMS.2003.40.3.489, Bull. Korean Math. Soc. 40 (2003), 489-501. (2003) Zbl1035.39008MR1996857DOI10.4134/BKMS.2003.40.3.489
  11. Sakar, S. H., 10.1023/B:MAHU.0000010821.30713.be, Period. Math. Hung. 47 (2003), 201-213. (2003) Zbl1050.39019MR2025623DOI10.1023/B:MAHU.0000010821.30713.be
  12. Srinivasan, R., Saravanan, S., Graef, J. R., Thandapani, E., 10.1515/msds-2022-0151, Nonauton. Dyn. Syst. 9 (2022), 163-169. (2022) Zbl1497.39008MR4471376DOI10.1515/msds-2022-0151
  13. Thandapani, E., Ravi, K., 10.1016/S0893-9659(99)00163-9, Appl. Math. Lett. 13 (2000), 43-49. (2000) Zbl0977.39003MR1751522DOI10.1016/S0893-9659(99)00163-9
  14. Thandapani, E., Ravi, K., Graef, J. R., 10.1016/S0898-1221(01)00211-5, Comput. Math. Appl. 42 (2001), 953-960. (2001) Zbl0983.39006MR1846199DOI10.1016/S0898-1221(01)00211-5
  15. Trench, W. F., 10.1090/S0002-9947-1974-0330632-X, Trans. Am. Math. Soc. 189 (1974), 319-327. (1974) Zbl0289.34051MR0330632DOI10.1090/S0002-9947-1974-0330632-X
  16. Zhang, B.-G., Cheng, S. S., Oscillation criteria and comparison theorems for delay difference equations, Fasc. Math. 25 (1995), 13-32. (1995) Zbl0830.39005MR1339622

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.