Symmetric and reversible properties of bi-amalgamated rings

Antonysamy Aruldoss; Chelliah Selvaraj

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 1, page 17-27
  • ISSN: 0011-4642

Abstract

top
Let f : A B and g : A C be two ring homomorphisms and let K and K ' be two ideals of B and C , respectively, such that f - 1 ( K ) = g - 1 ( K ' ) . We investigate unipotent, symmetric and reversible properties of the bi-amalgamation ring A f , g ( K , K ' ) of A with ( B , C ) along ( K , K ' ) with respect to ( f , g ) .

How to cite

top

Aruldoss, Antonysamy, and Selvaraj, Chelliah. "Symmetric and reversible properties of bi-amalgamated rings." Czechoslovak Mathematical Journal 74.1 (2024): 17-27. <http://eudml.org/doc/299241>.

@article{Aruldoss2024,
abstract = {Let $f \colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $K$ and $K^\{\prime \}$ be two ideals of $B$ and $C$, respectively, such that $f^\{-1\}(K) = g^\{-1\}(K^\{\prime \})$. We investigate unipotent, symmetric and reversible properties of the bi-amalgamation ring $A\bowtie ^\{f,g\}(K, K^\{\prime \})$ of $A$ with $(B, C)$ along $(K, K^\{\prime \})$ with respect to $(f, g)$.},
author = {Aruldoss, Antonysamy, Selvaraj, Chelliah},
journal = {Czechoslovak Mathematical Journal},
keywords = {amalgamated ring; unipotent; symmetric ring; reversible ring},
language = {eng},
number = {1},
pages = {17-27},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Symmetric and reversible properties of bi-amalgamated rings},
url = {http://eudml.org/doc/299241},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Aruldoss, Antonysamy
AU - Selvaraj, Chelliah
TI - Symmetric and reversible properties of bi-amalgamated rings
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 1
SP - 17
EP - 27
AB - Let $f \colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $K$ and $K^{\prime }$ be two ideals of $B$ and $C$, respectively, such that $f^{-1}(K) = g^{-1}(K^{\prime })$. We investigate unipotent, symmetric and reversible properties of the bi-amalgamation ring $A\bowtie ^{f,g}(K, K^{\prime })$ of $A$ with $(B, C)$ along $(K, K^{\prime })$ with respect to $(f, g)$.
LA - eng
KW - amalgamated ring; unipotent; symmetric ring; reversible ring
UR - http://eudml.org/doc/299241
ER -

References

top
  1. Călugăreanu, G., UU rings, Carpathian J. Math. 31 (2015), 157-163. (2015) Zbl1349.16059MR3408811
  2. Chun, Y., Jeon, Y. C., Kang, S., Lee, K. N., Lee, Y., 10.4134/BKMS.2011.48.1.115, Bull. Korean Math. Soc. 48 (2011), 115-127. (2011) Zbl1214.16021MR2778501DOI10.4134/BKMS.2011.48.1.115
  3. Cohn, P. M., 10.1112/S0024609399006116, Bull. Lond. Math. Soc. 31 (1999), 641-648. (1999) Zbl1021.16019MR1711020DOI10.1112/S0024609399006116
  4. D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1515/9783110213188.155, Commutative Algebra and its Applications Walter De Gruyter, Berlin (2009), 155-172. (2009) Zbl1177.13043MR2606283DOI10.1515/9783110213188.155
  5. Farshad, N., Safarisabet, S. A., Moussavi, A., 10.15672/hujms.676342, Hacet. J. Math. Stat. 50 (2021), 1358-1370. (2021) Zbl1499.16067MR4331405DOI10.15672/hujms.676342
  6. Goodearl, K. R., Von Neumann Regular Rings, Monographs and Studies in Mathematics 4. Pitman, London (1979). (1979) Zbl0411.16007MR0533669
  7. Kabbaj, S., Louartiti, K., Tamekkante, M., 10.1216/JCA-2017-9-1-65, J. Commut. Algebra 9 (2017), 65-87. (2017) Zbl1390.13008MR3631827DOI10.1216/JCA-2017-9-1-65
  8. Kafkas, G., Ungor, B., Halicioglu, S., Harmanci, A., Generalized symmetric rings, Algebra Discrete Math. 12 (2011), 72-84. (2011) Zbl1259.16042MR2952903
  9. Kose, H., Ungor, B., Kurtulmaz, Y., Harmanci, A., 10.1090/conm/727, Rings, Modules and Codes Contemporary Mathematics 727. AMS, Providence (2019), 237-247. (2019) Zbl1429.16031MR3938153DOI10.1090/conm/727
  10. Lambek, J., 10.4153/CMB-1971-065-1, Can. Math. Bull. 14 (1971), 359-368. (1971) Zbl0217.34005MR0313324DOI10.4153/CMB-1971-065-1
  11. Marks, G., 10.1016/S0022-4049(02)00070-1, J. Pure Appl. Algebra 174 (2002), 311-318. (2002) Zbl1046.16015MR1929410DOI10.1016/S0022-4049(02)00070-1
  12. Ouyang, L., Chen, H., 10.1080/00927870902828702, Commun. Algebra 38 (2010), 697-713. (2010) Zbl1197.16033MR2598907DOI10.1080/00927870902828702
  13. Zhao, L., Yang, G., On weakly reversible rings, Acta Math. Univ. Comen., New Ser. 76 (2007), 189-192. (2007) Zbl1156.16026MR2385031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.