Symmetric and reversible properties of bi-amalgamated rings
Antonysamy Aruldoss; Chelliah Selvaraj
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 1, page 17-27
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAruldoss, Antonysamy, and Selvaraj, Chelliah. "Symmetric and reversible properties of bi-amalgamated rings." Czechoslovak Mathematical Journal 74.1 (2024): 17-27. <http://eudml.org/doc/299241>.
@article{Aruldoss2024,
abstract = {Let $f \colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $K$ and $K^\{\prime \}$ be two ideals of $B$ and $C$, respectively, such that $f^\{-1\}(K) = g^\{-1\}(K^\{\prime \})$. We investigate unipotent, symmetric and reversible properties of the bi-amalgamation ring $A\bowtie ^\{f,g\}(K, K^\{\prime \})$ of $A$ with $(B, C)$ along $(K, K^\{\prime \})$ with respect to $(f, g)$.},
author = {Aruldoss, Antonysamy, Selvaraj, Chelliah},
journal = {Czechoslovak Mathematical Journal},
keywords = {amalgamated ring; unipotent; symmetric ring; reversible ring},
language = {eng},
number = {1},
pages = {17-27},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Symmetric and reversible properties of bi-amalgamated rings},
url = {http://eudml.org/doc/299241},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Aruldoss, Antonysamy
AU - Selvaraj, Chelliah
TI - Symmetric and reversible properties of bi-amalgamated rings
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 1
SP - 17
EP - 27
AB - Let $f \colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $K$ and $K^{\prime }$ be two ideals of $B$ and $C$, respectively, such that $f^{-1}(K) = g^{-1}(K^{\prime })$. We investigate unipotent, symmetric and reversible properties of the bi-amalgamation ring $A\bowtie ^{f,g}(K, K^{\prime })$ of $A$ with $(B, C)$ along $(K, K^{\prime })$ with respect to $(f, g)$.
LA - eng
KW - amalgamated ring; unipotent; symmetric ring; reversible ring
UR - http://eudml.org/doc/299241
ER -
References
top- Călugăreanu, G., UU rings, Carpathian J. Math. 31 (2015), 157-163. (2015) Zbl1349.16059MR3408811
- Chun, Y., Jeon, Y. C., Kang, S., Lee, K. N., Lee, Y., 10.4134/BKMS.2011.48.1.115, Bull. Korean Math. Soc. 48 (2011), 115-127. (2011) Zbl1214.16021MR2778501DOI10.4134/BKMS.2011.48.1.115
- Cohn, P. M., 10.1112/S0024609399006116, Bull. Lond. Math. Soc. 31 (1999), 641-648. (1999) Zbl1021.16019MR1711020DOI10.1112/S0024609399006116
- D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1515/9783110213188.155, Commutative Algebra and its Applications Walter De Gruyter, Berlin (2009), 155-172. (2009) Zbl1177.13043MR2606283DOI10.1515/9783110213188.155
- Farshad, N., Safarisabet, S. A., Moussavi, A., 10.15672/hujms.676342, Hacet. J. Math. Stat. 50 (2021), 1358-1370. (2021) Zbl1499.16067MR4331405DOI10.15672/hujms.676342
- Goodearl, K. R., Von Neumann Regular Rings, Monographs and Studies in Mathematics 4. Pitman, London (1979). (1979) Zbl0411.16007MR0533669
- Kabbaj, S., Louartiti, K., Tamekkante, M., 10.1216/JCA-2017-9-1-65, J. Commut. Algebra 9 (2017), 65-87. (2017) Zbl1390.13008MR3631827DOI10.1216/JCA-2017-9-1-65
- Kafkas, G., Ungor, B., Halicioglu, S., Harmanci, A., Generalized symmetric rings, Algebra Discrete Math. 12 (2011), 72-84. (2011) Zbl1259.16042MR2952903
- Kose, H., Ungor, B., Kurtulmaz, Y., Harmanci, A., 10.1090/conm/727, Rings, Modules and Codes Contemporary Mathematics 727. AMS, Providence (2019), 237-247. (2019) Zbl1429.16031MR3938153DOI10.1090/conm/727
- Lambek, J., 10.4153/CMB-1971-065-1, Can. Math. Bull. 14 (1971), 359-368. (1971) Zbl0217.34005MR0313324DOI10.4153/CMB-1971-065-1
- Marks, G., 10.1016/S0022-4049(02)00070-1, J. Pure Appl. Algebra 174 (2002), 311-318. (2002) Zbl1046.16015MR1929410DOI10.1016/S0022-4049(02)00070-1
- Ouyang, L., Chen, H., 10.1080/00927870902828702, Commun. Algebra 38 (2010), 697-713. (2010) Zbl1197.16033MR2598907DOI10.1080/00927870902828702
- Zhao, L., Yang, G., On weakly reversible rings, Acta Math. Univ. Comen., New Ser. 76 (2007), 189-192. (2007) Zbl1156.16026MR2385031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.