Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid
Jianwei Dong; Junhui Zhu; Litao Zhang
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 1, page 29-43
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDong, Jianwei, Zhu, Junhui, and Zhang, Litao. "Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid." Czechoslovak Mathematical Journal 74.1 (2024): 29-43. <http://eudml.org/doc/299242>.
@article{Dong2024,
abstract = {We study the non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid without viscosity. We first show that the life span of the classical solutions with decay at far fields must be finite for the 1D Cauchy problem if the initial momentum weight is positive. Then, we present several sufficient conditions for the non-existence of global classical solutions to the 1D initial-boundary value problem on $[0,1]$. To prove these results, some new average quantities are introduced.},
author = {Dong, Jianwei, Zhu, Junhui, Zhang, Litao},
journal = {Czechoslovak Mathematical Journal},
keywords = {micoropolar fluid; global classical solution; non-existence},
language = {eng},
number = {1},
pages = {29-43},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid},
url = {http://eudml.org/doc/299242},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Dong, Jianwei
AU - Zhu, Junhui
AU - Zhang, Litao
TI - Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 1
SP - 29
EP - 43
AB - We study the non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid without viscosity. We first show that the life span of the classical solutions with decay at far fields must be finite for the 1D Cauchy problem if the initial momentum weight is positive. Then, we present several sufficient conditions for the non-existence of global classical solutions to the 1D initial-boundary value problem on $[0,1]$. To prove these results, some new average quantities are introduced.
LA - eng
KW - micoropolar fluid; global classical solution; non-existence
UR - http://eudml.org/doc/299242
ER -
References
top- Bašić-Šiško, A., Dražić, I., 10.1016/j.jmaa.2020.124690, J. Math. Anal. Appl. 495 (2021), Article ID 124690, 26 pages. (2021) Zbl1462.35281MR4172845DOI10.1016/j.jmaa.2020.124690
- Bašić-Šiško, A., Dražić, I., 10.1002/mma.7032, Math. Methods Appl. Sci. 44 (2021), 4330-4341. (2021) Zbl1473.76044MR4235508DOI10.1002/mma.7032
- Bašić-Šiško, A., Dražić, I., 10.1016/j.jmaa.2022.125988, J. Math. Anal. Appl. 509 (2022), Article ID 125988, 31 pages. (2022) Zbl1509.35207MR4362867DOI10.1016/j.jmaa.2022.125988
- Bašić-Šiško, A., Dražić, I., Simčić, L., 10.1016/j.matcom.2021.12.024, Math. Comput. Simul. 195 (2022), 71-87. (2022) Zbl07487705MR4372809DOI10.1016/j.matcom.2021.12.024
- Chang, S., Duan, R., 10.1016/j.jmaa.2022.126462, J. Math. Anal. Appl. 516 (2022), Article ID 126462, 41 pages. (2022) Zbl1504.35219MR4450883DOI10.1016/j.jmaa.2022.126462
- Cui, H., Yin, H., 10.1016/j.jmaa.2016.11.065, J. Math. Anal. Appl. 449 (2017), 464-489. (2017) Zbl1360.35172MR3595213DOI10.1016/j.jmaa.2016.11.065
- Dong, J., Ju, Q., 10.1360/N012018-00134, Sci. Sin., Math. 50 (2020), 873-884 Chinese. (2020) Zbl1499.35117DOI10.1360/N012018-00134
- Dong, J., Xue, H., Lou, G., 10.1016/j.euromechflu.2019.03.005, Eur. J. Mech., B, Fluids 76 (2019), 272-275. (2019) Zbl1469.35171MR3926951DOI10.1016/j.euromechflu.2019.03.005
- Dong, J., Zhu, J., Wang, Y., 10.21136/CMJ.2019.0156-18, Czech. Math. J. 70 (2020), 9-19. (2020) Zbl1513.35449MR4078344DOI10.21136/CMJ.2019.0156-18
- Dong, J., Zhu, J., Xue, H., 10.1007/s11040-018-9279-z, Math. Phys. Anal. Geom. 21 (2018), Article ID 20, 8 pages. (2018) Zbl1394.76136MR3835282DOI10.1007/s11040-018-9279-z
- Duan, R., 10.1016/j.jmaa.2018.03.009, J. Math. Anal. Appl. 463 (2018), 477-495. (2018) Zbl1390.35267MR3785466DOI10.1016/j.jmaa.2018.03.009
- Duan, R., 10.1016/j.nonrwa.2017.12.006, Nonlinear Anal., Real World Appl. 42 (2018), 71-92. (2018) Zbl1516.35330MR3773352DOI10.1016/j.nonrwa.2017.12.006
- Eringen, A. C., 10.1512/iumj.1967.16.16001, J. Math. Mech. 16 (1966), 1-18. (1966) MR0204005DOI10.1512/iumj.1967.16.16001
- Feng, Z., Zhu, C., 10.3934/dcds.2019127, Discrete Contin. Dyn. Syst. 39 (2019), 3069-3097. (2019) Zbl1420.35235MR3959421DOI10.3934/dcds.2019127
- Gao, J., Cui, H., 10.1007/s10473-021-0410-z, Acta Math. Sci., Ser. B, Engl. Ed. 41 (2021), 1169-1195. (2021) Zbl1513.35452MR4266912DOI10.1007/s10473-021-0410-z
- Huang, L., Yang, X.-G., Lu, Y., Wang, T., 10.1007/s00033-019-1083-5, Z. Angew. Math. Phys. 70 (2019), Article ID 40, 20 pages. (2019) Zbl1412.35220MR3908857DOI10.1007/s00033-019-1083-5
- Jiu, Q., Wang, Y., Xin, Z., 10.1016/j.jde.2015.04.007, J. Differ. Equations 259 (2015), 2981-3003. (2015) Zbl1319.35194MR3360663DOI10.1016/j.jde.2015.04.007
- {Ł}ukaszewicz, G., 10.1007/978-1-4612-0641-5, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999). (1999) Zbl0923.76003MR1711268DOI10.1007/978-1-4612-0641-5
- Mujaković, N., One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem, Glas. Mat., III. Ser. 33 (1998), 71-91. (1998) Zbl0912.35135MR1652788
- Mujaković, N., One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem, Glas. Mat., III. Ser. 33 (1998), 199-208. (1998) Zbl0917.76004MR1695531
- Mujaković, N., 10.3336/gm.40.1.10, Glas. Mat., III. Ser. 40 (2005), 103-120. (2005) Zbl1082.35128MR2195864DOI10.3336/gm.40.1.10
- Mujaković, N., One-dimensional flow of a compressible viscous micropolar fluid: The Cauchy problem, Math. Commun. 10 (2005), 1-14. (2005) Zbl1076.35103MR2239387
- Mujaković, N., Uniqueness of a solution of the Cauchy problem for one-dimensional compressible viscous micropolar fluid model, Appl. Math. E-Notes 6 (2006), 113-118. (2006) Zbl1154.76045MR2219158
- Mujaković, N., 10.1007/s11565-007-0023-z, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 53 (2007), 361-379. (2007) Zbl1180.35007MR2358235DOI10.1007/s11565-007-0023-z
- Mujaković, N., 10.7153/mia-12-49, Math. Inequal. Appl. 12 (2009), 651-662. (2009) Zbl1178.35007MR2540984DOI10.7153/mia-12-49
- Mujaković, N., 10.1016/j.nonrwa.2011.12.012, Nonlinear Anal., Real World Appl. 13 (2012), 1844-1853. (2012) Zbl1254.76122MR2891014DOI10.1016/j.nonrwa.2011.12.012
- Mujaković, N., 10.1016/j.nonrwa.2014.02.006, Nonlinear Anal., Real World Appl. 19 (2014), 19-30. (2014) Zbl1300.35100MR3206655DOI10.1016/j.nonrwa.2014.02.006
- Mujaković, N., Črnjarić-Žic, N., Convergent finite difference scheme for 1D flow of compressible micropolar fluid, Int. J. Numer. Anal. Model. 12 (2015), 94-124. (2015) Zbl1329.35251MR3286458
- Qin, Y., Wang, T., Hu, G., 10.1016/j.nonrwa.2010.10.023, Nonlinear Anal., Real World Appl. 13 (2012), 1010-1029. (2012) Zbl1239.35127MR2863933DOI10.1016/j.nonrwa.2010.10.023
- Sideris, T. C., 10.1007/BF01210741, Commun. Math. Phys. 101 (1985), 475-485. (1985) Zbl0606.76088MR0815196DOI10.1007/BF01210741
- Wang, G., Guo, B., Fang, S., 10.1002/mma.4384, Math. Methods Appl. Sci. 40 (2017), 5262-5272. (2017) Zbl1383.35034MR3689262DOI10.1002/mma.4384
- Xin, Z., 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C, Commun. Pure Appl. Math. 51 (1998), 229-240. (1998) Zbl0937.35134MR1488513DOI10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
- Xin, Z., Yan, W., 10.1007/s00220-012-1610-0, Commun. Math. Phys. 321 (2013), 529-541. (2013) Zbl1287.35059MR3063918DOI10.1007/s00220-012-1610-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.