Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid

Jianwei Dong; Junhui Zhu; Litao Zhang

Czechoslovak Mathematical Journal (2024)

  • Issue: 1, page 29-43
  • ISSN: 0011-4642

Abstract

top
We study the non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid without viscosity. We first show that the life span of the classical solutions with decay at far fields must be finite for the 1D Cauchy problem if the initial momentum weight is positive. Then, we present several sufficient conditions for the non-existence of global classical solutions to the 1D initial-boundary value problem on [ 0 , 1 ] . To prove these results, some new average quantities are introduced.

How to cite

top

Dong, Jianwei, Zhu, Junhui, and Zhang, Litao. "Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid." Czechoslovak Mathematical Journal (2024): 29-43. <http://eudml.org/doc/299242>.

@article{Dong2024,
abstract = {We study the non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid without viscosity. We first show that the life span of the classical solutions with decay at far fields must be finite for the 1D Cauchy problem if the initial momentum weight is positive. Then, we present several sufficient conditions for the non-existence of global classical solutions to the 1D initial-boundary value problem on $[0,1]$. To prove these results, some new average quantities are introduced.},
author = {Dong, Jianwei, Zhu, Junhui, Zhang, Litao},
journal = {Czechoslovak Mathematical Journal},
keywords = {micoropolar fluid; global classical solution; non-existence},
language = {eng},
number = {1},
pages = {29-43},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid},
url = {http://eudml.org/doc/299242},
year = {2024},
}

TY - JOUR
AU - Dong, Jianwei
AU - Zhu, Junhui
AU - Zhang, Litao
TI - Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 29
EP - 43
AB - We study the non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid without viscosity. We first show that the life span of the classical solutions with decay at far fields must be finite for the 1D Cauchy problem if the initial momentum weight is positive. Then, we present several sufficient conditions for the non-existence of global classical solutions to the 1D initial-boundary value problem on $[0,1]$. To prove these results, some new average quantities are introduced.
LA - eng
KW - micoropolar fluid; global classical solution; non-existence
UR - http://eudml.org/doc/299242
ER -

References

top
  1. Bašić-Šiško, A., Dražić, I., 10.1016/j.jmaa.2020.124690, J. Math. Anal. Appl. 495 (2021), Article ID 124690, 26 pages. (2021) Zbl1462.35281MR4172845DOI10.1016/j.jmaa.2020.124690
  2. Bašić-Šiško, A., Dražić, I., 10.1002/mma.7032, Math. Methods Appl. Sci. 44 (2021), 4330-4341. (2021) Zbl1473.76044MR4235508DOI10.1002/mma.7032
  3. Bašić-Šiško, A., Dražić, I., 10.1016/j.jmaa.2022.125988, J. Math. Anal. Appl. 509 (2022), Article ID 125988, 31 pages. (2022) Zbl1509.35207MR4362867DOI10.1016/j.jmaa.2022.125988
  4. Bašić-Šiško, A., Dražić, I., Simčić, L., 10.1016/j.matcom.2021.12.024, Math. Comput. Simul. 195 (2022), 71-87. (2022) Zbl07487705MR4372809DOI10.1016/j.matcom.2021.12.024
  5. Chang, S., Duan, R., 10.1016/j.jmaa.2022.126462, J. Math. Anal. Appl. 516 (2022), Article ID 126462, 41 pages. (2022) Zbl1504.35219MR4450883DOI10.1016/j.jmaa.2022.126462
  6. Cui, H., Yin, H., 10.1016/j.jmaa.2016.11.065, J. Math. Anal. Appl. 449 (2017), 464-489. (2017) Zbl1360.35172MR3595213DOI10.1016/j.jmaa.2016.11.065
  7. Dong, J., Ju, Q., 10.1360/N012018-00134, Sci. Sin., Math. 50 (2020), 873-884 Chinese. (2020) Zbl1499.35117DOI10.1360/N012018-00134
  8. Dong, J., Xue, H., Lou, G., 10.1016/j.euromechflu.2019.03.005, Eur. J. Mech., B, Fluids 76 (2019), 272-275. (2019) Zbl1469.35171MR3926951DOI10.1016/j.euromechflu.2019.03.005
  9. Dong, J., Zhu, J., Wang, Y., 10.21136/CMJ.2019.0156-18, Czech. Math. J. 70 (2020), 9-19. (2020) Zbl1513.35449MR4078344DOI10.21136/CMJ.2019.0156-18
  10. Dong, J., Zhu, J., Xue, H., 10.1007/s11040-018-9279-z, Math. Phys. Anal. Geom. 21 (2018), Article ID 20, 8 pages. (2018) Zbl1394.76136MR3835282DOI10.1007/s11040-018-9279-z
  11. Duan, R., 10.1016/j.jmaa.2018.03.009, J. Math. Anal. Appl. 463 (2018), 477-495. (2018) Zbl1390.35267MR3785466DOI10.1016/j.jmaa.2018.03.009
  12. Duan, R., 10.1016/j.nonrwa.2017.12.006, Nonlinear Anal., Real World Appl. 42 (2018), 71-92. (2018) Zbl1516.35330MR3773352DOI10.1016/j.nonrwa.2017.12.006
  13. Eringen, A. C., 10.1512/iumj.1967.16.16001, J. Math. Mech. 16 (1966), 1-18. (1966) MR0204005DOI10.1512/iumj.1967.16.16001
  14. Feng, Z., Zhu, C., 10.3934/dcds.2019127, Discrete Contin. Dyn. Syst. 39 (2019), 3069-3097. (2019) Zbl1420.35235MR3959421DOI10.3934/dcds.2019127
  15. Gao, J., Cui, H., 10.1007/s10473-021-0410-z, Acta Math. Sci., Ser. B, Engl. Ed. 41 (2021), 1169-1195. (2021) Zbl1513.35452MR4266912DOI10.1007/s10473-021-0410-z
  16. Huang, L., Yang, X.-G., Lu, Y., Wang, T., 10.1007/s00033-019-1083-5, Z. Angew. Math. Phys. 70 (2019), Article ID 40, 20 pages. (2019) Zbl1412.35220MR3908857DOI10.1007/s00033-019-1083-5
  17. Jiu, Q., Wang, Y., Xin, Z., 10.1016/j.jde.2015.04.007, J. Differ. Equations 259 (2015), 2981-3003. (2015) Zbl1319.35194MR3360663DOI10.1016/j.jde.2015.04.007
  18. {Ł}ukaszewicz, G., 10.1007/978-1-4612-0641-5, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999). (1999) Zbl0923.76003MR1711268DOI10.1007/978-1-4612-0641-5
  19. Mujaković, N., One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem, Glas. Mat., III. Ser. 33 (1998), 71-91. (1998) Zbl0912.35135MR1652788
  20. Mujaković, N., One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem, Glas. Mat., III. Ser. 33 (1998), 199-208. (1998) Zbl0917.76004MR1695531
  21. Mujaković, N., 10.3336/gm.40.1.10, Glas. Mat., III. Ser. 40 (2005), 103-120. (2005) Zbl1082.35128MR2195864DOI10.3336/gm.40.1.10
  22. Mujaković, N., One-dimensional flow of a compressible viscous micropolar fluid: The Cauchy problem, Math. Commun. 10 (2005), 1-14. (2005) Zbl1076.35103MR2239387
  23. Mujaković, N., Uniqueness of a solution of the Cauchy problem for one-dimensional compressible viscous micropolar fluid model, Appl. Math. E-Notes 6 (2006), 113-118. (2006) Zbl1154.76045MR2219158
  24. Mujaković, N., 10.1007/s11565-007-0023-z, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 53 (2007), 361-379. (2007) Zbl1180.35007MR2358235DOI10.1007/s11565-007-0023-z
  25. Mujaković, N., 10.7153/mia-12-49, Math. Inequal. Appl. 12 (2009), 651-662. (2009) Zbl1178.35007MR2540984DOI10.7153/mia-12-49
  26. Mujaković, N., 10.1016/j.nonrwa.2011.12.012, Nonlinear Anal., Real World Appl. 13 (2012), 1844-1853. (2012) Zbl1254.76122MR2891014DOI10.1016/j.nonrwa.2011.12.012
  27. Mujaković, N., 10.1016/j.nonrwa.2014.02.006, Nonlinear Anal., Real World Appl. 19 (2014), 19-30. (2014) Zbl1300.35100MR3206655DOI10.1016/j.nonrwa.2014.02.006
  28. Mujaković, N., Črnjarić-Žic, N., Convergent finite difference scheme for 1D flow of compressible micropolar fluid, Int. J. Numer. Anal. Model. 12 (2015), 94-124. (2015) Zbl1329.35251MR3286458
  29. Qin, Y., Wang, T., Hu, G., 10.1016/j.nonrwa.2010.10.023, Nonlinear Anal., Real World Appl. 13 (2012), 1010-1029. (2012) Zbl1239.35127MR2863933DOI10.1016/j.nonrwa.2010.10.023
  30. Sideris, T. C., 10.1007/BF01210741, Commun. Math. Phys. 101 (1985), 475-485. (1985) Zbl0606.76088MR0815196DOI10.1007/BF01210741
  31. Wang, G., Guo, B., Fang, S., 10.1002/mma.4384, Math. Methods Appl. Sci. 40 (2017), 5262-5272. (2017) Zbl1383.35034MR3689262DOI10.1002/mma.4384
  32. Xin, Z., 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C, Commun. Pure Appl. Math. 51 (1998), 229-240. (1998) Zbl0937.35134MR1488513DOI10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
  33. Xin, Z., Yan, W., 10.1007/s00220-012-1610-0, Commun. Math. Phys. 321 (2013), 529-541. (2013) Zbl1287.35059MR3063918DOI10.1007/s00220-012-1610-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.