Ridge estimation of covariance matrix from data in two classes
Applications of Mathematics (2024)
- Volume: 69, Issue: 2, page 169-184
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhou, Yi, and Zhang, Bin. "Ridge estimation of covariance matrix from data in two classes." Applications of Mathematics 69.2 (2024): 169-184. <http://eudml.org/doc/299252>.
@article{Zhou2024,
abstract = {This paper deals with the problem of estimating a covariance matrix from the data in two classes: (1) good data with the covariance matrix of interest and (2) contamination coming from a Gaussian distribution with a different covariance matrix. The ridge penalty is introduced to address the problem of high-dimensional challenges in estimating the covariance matrix from the two-class data model. A ridge estimator of the covariance matrix has a uniform expression and keeps positive-definite, whether the data size is larger or smaller than the data dimension. Furthermore, the ridge parameter is tuned through a cross-validation procedure. Lastly, the proposed ridge estimator is verified with better performance than the existing estimator from the data in two classes and the traditional ridge estimator only from the good data.},
author = {Zhou, Yi, Zhang, Bin},
journal = {Applications of Mathematics},
keywords = {covariance matrix; ridge estimation; two-class data; contamination},
language = {eng},
number = {2},
pages = {169-184},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ridge estimation of covariance matrix from data in two classes},
url = {http://eudml.org/doc/299252},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Zhou, Yi
AU - Zhang, Bin
TI - Ridge estimation of covariance matrix from data in two classes
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 169
EP - 184
AB - This paper deals with the problem of estimating a covariance matrix from the data in two classes: (1) good data with the covariance matrix of interest and (2) contamination coming from a Gaussian distribution with a different covariance matrix. The ridge penalty is introduced to address the problem of high-dimensional challenges in estimating the covariance matrix from the two-class data model. A ridge estimator of the covariance matrix has a uniform expression and keeps positive-definite, whether the data size is larger or smaller than the data dimension. Furthermore, the ridge parameter is tuned through a cross-validation procedure. Lastly, the proposed ridge estimator is verified with better performance than the existing estimator from the data in two classes and the traditional ridge estimator only from the good data.
LA - eng
KW - covariance matrix; ridge estimation; two-class data; contamination
UR - http://eudml.org/doc/299252
ER -
References
top- Ahsanullah, M., Nevzorov, V. B., 10.1016/S0378-3758(99)00067-1, J. Stat. Plann. Inference 85 (2000), 75-83. (2000) Zbl0968.62017MR1759240DOI10.1016/S0378-3758(99)00067-1
- Besson, O., 10.1016/j.sigpro.2019.107285, Signal Process. 167 (2020), Article ID 107285, 9 pages. (2020) DOI10.1016/j.sigpro.2019.107285
- Bhatia, R., 10.1515/9781400827787, Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007). (2007) Zbl1133.15017MR3443454DOI10.1515/9781400827787
- Bien, J., Tibshirani, R. J., 10.1093/biomet/asr054, Biometrika 98 (2011), 807-820. (2011) Zbl1228.62063MR2860325DOI10.1093/biomet/asr054
- Bodnar, O., Bodnar, T., Parolya, N., 10.1016/j.jmva.2021.104826, J. Multivariate Anal. 188 (2022), Article ID 104826, 13 pages. (2022) Zbl1493.62298MR4353848DOI10.1016/j.jmva.2021.104826
- Cho, S., Katayama, S., Lim, J., Choi, Y.-G., 10.1007/s10182-021-00396-7, AStA, Adv. Stat. Anal. 105 (2021), 601-627. (2021) Zbl1478.62118MR4340896DOI10.1007/s10182-021-00396-7
- Danaher, P., Wang, P., Witten, D. M., 10.1111/rssb.12033, J. R. Stat. Soc., Ser. B, Stat. Methodol. 76 (2014), 373-397. (2014) Zbl07555455MR3164871DOI10.1111/rssb.12033
- Fisher, T. J., Sun, X., 10.1016/j.csda.2010.12.006, Comput. Stat. Data Anal. 55 (2011), 1909-1918. (2011) Zbl1328.62336MR2765053DOI10.1016/j.csda.2010.12.006
- Götze, F., Tikhomirov, A., 10.3150/bj/1089206408, Bernoulli 10 (2004), 503-548. (2004) Zbl1049.60018MR2061442DOI10.3150/bj/1089206408
- Hannart, A., Naveau, P., 10.1016/j.jmva.2014.06.001, J. Multivariate Anal. 131 (2014), 149-162. (2014) Zbl1306.62120MR3252641DOI10.1016/j.jmva.2014.06.001
- Hoshino, N., Takemura, A., 10.2307/3318470, Bernoulli 6 (2000), 1035-1050. (2000) Zbl0979.65005MR1809734DOI10.2307/3318470
- Huang, C., Farewell, D., Pan, J., 10.1016/j.jmva.2017.03.001, J. Multivariate Anal. 157 (2017), 45-52. (2017) Zbl1362.62136MR3641735DOI10.1016/j.jmva.2017.03.001
- Huang, J. Z., Liu, N., Pourahmadi, M., Liu, L., 10.1093/biomet/93.1.85, Biometrika 93 (2006), 85-98. (2006) Zbl1152.62346MR2277742DOI10.1093/biomet/93.1.85
- Jia, S., Zhang, C., Lu, H., 10.1016/j.jmva.2021.104900, J. Multivariate Anal. 187 (2022), Article ID 104900, 14 pages. (2022) Zbl1480.62098MR4339021DOI10.1016/j.jmva.2021.104900
- Kalina, J., Tebbens, J. D., 10.5220/0005234901280133, Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms Scitepress, Setúbal (2015), 128-133. (2015) DOI10.5220/0005234901280133
- Kochan, N., Tütüncü, G. Y., Giner, G., 10.1016/j.eswa.2020.114200, Expert Systems Appl. 167 (2021), Article ID 114200, 5 pages. (2021) DOI10.1016/j.eswa.2020.114200
- Le, C. M., Levin, K., Bickel, P. J., Levina, E., 10.1080/00401706.2020.1796815, Technometrics 62 (2020), 443-446. (2020) MR4165992DOI10.1080/00401706.2020.1796815
- Ledoit, O., Wolf, M., 10.1016/S0047-259X(03)00096-4, J. Multivariate Anal. 88 (2004), 365-411. (2004) Zbl1032.62050MR2026339DOI10.1016/S0047-259X(03)00096-4
- Li, C.-N., Ren, P.-W., Guo, Y.-R., Ye, Y.-F., Shao, Y.-H., 10.1007/s10479-022-04959-y, (to appear) in Ann. Oper. Res. DOI10.1007/s10479-022-04959-y
- Lim, L.-H., Sepulchre, R., Ye, K., 10.1109/TIT.2019.2913874, IEEE Trans. Inf. Theory 65 (2019), 5401-5405. (2019) Zbl1432.15033MR4009241DOI10.1109/TIT.2019.2913874
- Massignan, J. A. D., London, J. B. A., Bessani, M., Maciel, C. D., Fannucchi, R. Z., Miranda, V., 10.1109/TSG.2021.3128053, IEEE Trans. Smart Grid 13 (2022), 526-540. (2022) DOI10.1109/TSG.2021.3128053
- Mestre, X., 10.1109/TSP.2008.929662, IEEE Trans. Signal Process. 56 (2008), 5353-5368. (2008) Zbl1391.62092MR2472837DOI10.1109/TSP.2008.929662
- Raninen, E., Ollila, E., 10.1109/TSP.2021.3118546, IEEE Trans. Signal Process. 69 (2021), 5681-5692. (2021) MR4332948DOI10.1109/TSP.2021.3118546
- Raninen, E., Tyler, D. E., Ollila, E., 10.1109/TSP.2021.3139207, IEEE Trans. Signal Process. 70 (2022), 659-672. (2022) MR4381805DOI10.1109/TSP.2021.3139207
- Scheidegger, C., Hörrmann, J., Bühlmann, P., The weighted generalised covariance measure, J. Mach. Learn. Res. 23 (2022), Article ID 273, 68 pages. (2022) MR4577712
- Tsukuma, H., Kubokawa, T., 10.1016/j.jmva.2015.09.016, J. Multivariate Anal. 143 (2016), 233-248. (2016) Zbl1328.62348MR3431430DOI10.1016/j.jmva.2015.09.016
- Wieringen, W. N. van, Peeters, C. F. W., 10.1016/j.csda.2016.05.012, Comput. Stat. Data Anal. 103 (2016), 284-303. (2016) Zbl1466.62204MR3522633DOI10.1016/j.csda.2016.05.012
- Vershynin, R., 10.1007/s10959-010-0338-z, J. Theor. Probab. 25 (2012), 655-686. (2012) Zbl1365.62208MR2956207DOI10.1007/s10959-010-0338-z
- Wang, H., Peng, B., Li, D., Leng, C., 10.1016/j.jeconom.2020.09.002, J. Econom. 223 (2021), 53-72. (2021) Zbl1471.62378MR4252147DOI10.1016/j.jeconom.2020.09.002
- Warton, D. I., 10.1198/016214508000000021, J. Am. Stat. Assoc. 103 (2008), 340-349. (2008) Zbl1471.62362MR2394637DOI10.1198/016214508000000021
- Witten, D. M., Tibshirani, R., 10.1111/j.1467-9868.2009.00699.x, J. R. Stat. Soc., Ser. B, Stat. Methodol. 71 (2009), 615-636. (2009) Zbl1250.62033MR2749910DOI10.1111/j.1467-9868.2009.00699.x
- Xi, B., Li, J., Li, Y., Song, R., Hong, D., Chanussot, J., 10.1109/TIP.2022.3192712, IEEE Trans. Image Process. 31 (2022), 5079-5092. (2022) DOI10.1109/TIP.2022.3192712
- Xue, L., Ma, S., Zou, H., 10.1080/01621459.2012.725386, J. Am. Stat. Assoc. 107 (2012), 1480-1491. (2012) Zbl1258.62063MR3036409DOI10.1080/01621459.2012.725386
- Yang, Y., Zhou, J., Pan, J., 10.1016/j.jmva.2021.104739, J. Multivariate Anal. 184 (2021), Article ID 104739, 17 pages. (2021) Zbl1467.62095MR4236460DOI10.1016/j.jmva.2021.104739
- Yin, Y., 10.3150/21-BEJ1391, Bernoulli 28 (2022), 1729-1756. (2022) Zbl07526604MR4411509DOI10.3150/21-BEJ1391
- Yuasa, R., Kubokawa, T., 10.1016/j.jmva.2020.104608, J. Multivariate Anal. 178 (2020), Article ID 104608, 18 pages. (2020) Zbl1440.62036MR4079038DOI10.1016/j.jmva.2020.104608
- Zhang, H., Jia, J., 10.5705/ss.202019.0315, Stat. Sin. 32 (2022), 181-207. (2022) Zbl07484115MR4359629DOI10.5705/ss.202019.0315
- Zhang, Y., Zhou, Y., Liu, X., 10.1016/j.csda.2022.107617, Comput. Stat. Data Anal. 178 (2023), Article ID 107617, 19 pages. (2023) Zbl07626679MR4483317DOI10.1016/j.csda.2022.107617
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.