On the asymptotics of counting functions for Ahlfors regular sets

Dušan Pokorný; Marc Rauch

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 1, page 69-119
  • ISSN: 0010-2628

Abstract

top
We deal with the so-called Ahlfors regular sets (also known as s -regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit lim ε 0 + ε s N ( ε , K ) exist, where K is an s -regular set and N ( ε , K ) is for instance the ε -packing number of K ?

How to cite

top

Pokorný, Dušan, and Rauch, Marc. "On the asymptotics of counting functions for Ahlfors regular sets." Commentationes Mathematicae Universitatis Carolinae 62 63.1 (2022): 69-119. <http://eudml.org/doc/299267>.

@article{Pokorný2022,
abstract = {We deal with the so-called Ahlfors regular sets (also known as $s$-regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit $\lim _\{\varepsilon \rightarrow 0+\} \varepsilon ^s N(\varepsilon ,K)$ exist, where $K$ is an $s$-regular set and $N(\varepsilon ,K)$ is for instance the $\varepsilon $-packing number of $K$?},
author = {Pokorný, Dušan, Rauch, Marc},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Ahlfors regular; $s$-regular; packing number; Minkowski measurability; renewal theory},
language = {eng},
number = {1},
pages = {69-119},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the asymptotics of counting functions for Ahlfors regular sets},
url = {http://eudml.org/doc/299267},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Pokorný, Dušan
AU - Rauch, Marc
TI - On the asymptotics of counting functions for Ahlfors regular sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 1
SP - 69
EP - 119
AB - We deal with the so-called Ahlfors regular sets (also known as $s$-regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit $\lim _{\varepsilon \rightarrow 0+} \varepsilon ^s N(\varepsilon ,K)$ exist, where $K$ is an $s$-regular set and $N(\varepsilon ,K)$ is for instance the $\varepsilon $-packing number of $K$?
LA - eng
KW - Ahlfors regular; $s$-regular; packing number; Minkowski measurability; renewal theory
UR - http://eudml.org/doc/299267
ER -

References

top
  1. Arcozzi N., Rochberg R., Sawyer E. T., Wick B. D., 10.1007/s11118-013-9371-8, Potential Anal. 41 (2014), no. 2, 317–366. MR3232028DOI10.1007/s11118-013-9371-8
  2. Balogh Z. M., Rohner H., 10.1215/ijm/1258138544, Illinois J. Math. 51 (2007), no. 4, 1275–1297. MR2417427DOI10.1215/ijm/1258138544
  3. Bowen R., 10.1007/BFb0081284, Lecture Notes in Mathematics, 470, Springer, Berlin, 1975. MR0442989DOI10.1007/BFb0081284
  4. Freiberg U., Kombrink S., 10.1007/s10711-011-9661-5, Geom. Dedicata 159 (2012), 307–325. MR2944534DOI10.1007/s10711-011-9661-5
  5. Gatzouras D., 10.1090/S0002-9947-99-02539-8, Trans. Amer. Math. Soc. 352 (2000), no. 5, 1953–1983. Zbl0946.28006MR1694290DOI10.1090/S0002-9947-99-02539-8
  6. Hutchinson J. E., 10.1512/iumj.1981.30.30055, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR0625600DOI10.1512/iumj.1981.30.30055
  7. Kesseböhmer M., Kombrink S., A complex Ruelle–Perron–Frobenius theorem for infinite Markov shifts with applications to renewal theory, Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 2, 335–352. MR3600649
  8. Kesseböhmer M., Kombrink S., Minkowski measurability of infinite conformal graph directed systems and application to Apollonian packings, available at arXiv:1702.02854v1 [math.DS] (2017), 30 pages. 
  9. Kombrink S., Renewal theorems for a class of processes with dependent interarrival times and applications in geometry, available at arXiv:1512.08351v2 [math.PR] (2017), 25 pages. MR3881115
  10. Lalley S. P., 10.1512/iumj.1988.37.37034, Indiana Univ. Math. J. 37 (1988), no. 3, 699–710. MR0962930DOI10.1512/iumj.1988.37.37034
  11. Lalley S. P., 10.1007/BF02392732, Acta Math. 163 (1989), no. 1–2, 1–55. MR1007619DOI10.1007/BF02392732
  12. Mattila P., Geometry of Sets and Measures in Euclidean Spaces, Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. Zbl0911.28005MR1333890
  13. Schief A., 10.1090/S0002-9939-1994-1191872-1, Proc. Amer. Math. Soc. 122 (1994), no. 1, 111–115. Zbl0807.28005MR1191872DOI10.1090/S0002-9939-1994-1191872-1
  14. Stachó L. L., On the volume function of parallel sets, Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 365–374. MR0442202
  15. Winter S., 10.4064/dm453-0-1, Dissertationes Math., 453, 2008, 66 pages. MR2423952DOI10.4064/dm453-0-1
  16. Zähle M., (S)PDE on fractals and Gaussian noise, in Recent Developments in Fractals and Related Fields, Trends Math., Birkhäuser/Springer, Cham, 2017, pages 295–312. MR3775469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.