On the asymptotics of counting functions for Ahlfors regular sets
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 1, page 69-119
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPokorný, Dušan, and Rauch, Marc. "On the asymptotics of counting functions for Ahlfors regular sets." Commentationes Mathematicae Universitatis Carolinae 62 63.1 (2022): 69-119. <http://eudml.org/doc/299267>.
@article{Pokorný2022,
abstract = {We deal with the so-called Ahlfors regular sets (also known as $s$-regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit $\lim _\{\varepsilon \rightarrow 0+\} \varepsilon ^s N(\varepsilon ,K)$ exist, where $K$ is an $s$-regular set and $N(\varepsilon ,K)$ is for instance the $\varepsilon $-packing number of $K$?},
author = {Pokorný, Dušan, Rauch, Marc},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Ahlfors regular; $s$-regular; packing number; Minkowski measurability; renewal theory},
language = {eng},
number = {1},
pages = {69-119},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the asymptotics of counting functions for Ahlfors regular sets},
url = {http://eudml.org/doc/299267},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Pokorný, Dušan
AU - Rauch, Marc
TI - On the asymptotics of counting functions for Ahlfors regular sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 1
SP - 69
EP - 119
AB - We deal with the so-called Ahlfors regular sets (also known as $s$-regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit $\lim _{\varepsilon \rightarrow 0+} \varepsilon ^s N(\varepsilon ,K)$ exist, where $K$ is an $s$-regular set and $N(\varepsilon ,K)$ is for instance the $\varepsilon $-packing number of $K$?
LA - eng
KW - Ahlfors regular; $s$-regular; packing number; Minkowski measurability; renewal theory
UR - http://eudml.org/doc/299267
ER -
References
top- Arcozzi N., Rochberg R., Sawyer E. T., Wick B. D., 10.1007/s11118-013-9371-8, Potential Anal. 41 (2014), no. 2, 317–366. MR3232028DOI10.1007/s11118-013-9371-8
- Balogh Z. M., Rohner H., 10.1215/ijm/1258138544, Illinois J. Math. 51 (2007), no. 4, 1275–1297. MR2417427DOI10.1215/ijm/1258138544
- Bowen R., 10.1007/BFb0081284, Lecture Notes in Mathematics, 470, Springer, Berlin, 1975. MR0442989DOI10.1007/BFb0081284
- Freiberg U., Kombrink S., 10.1007/s10711-011-9661-5, Geom. Dedicata 159 (2012), 307–325. MR2944534DOI10.1007/s10711-011-9661-5
- Gatzouras D., 10.1090/S0002-9947-99-02539-8, Trans. Amer. Math. Soc. 352 (2000), no. 5, 1953–1983. Zbl0946.28006MR1694290DOI10.1090/S0002-9947-99-02539-8
- Hutchinson J. E., 10.1512/iumj.1981.30.30055, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR0625600DOI10.1512/iumj.1981.30.30055
- Kesseböhmer M., Kombrink S., A complex Ruelle–Perron–Frobenius theorem for infinite Markov shifts with applications to renewal theory, Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 2, 335–352. MR3600649
- Kesseböhmer M., Kombrink S., Minkowski measurability of infinite conformal graph directed systems and application to Apollonian packings, available at arXiv:1702.02854v1 [math.DS] (2017), 30 pages.
- Kombrink S., Renewal theorems for a class of processes with dependent interarrival times and applications in geometry, available at arXiv:1512.08351v2 [math.PR] (2017), 25 pages. MR3881115
- Lalley S. P., 10.1512/iumj.1988.37.37034, Indiana Univ. Math. J. 37 (1988), no. 3, 699–710. MR0962930DOI10.1512/iumj.1988.37.37034
- Lalley S. P., 10.1007/BF02392732, Acta Math. 163 (1989), no. 1–2, 1–55. MR1007619DOI10.1007/BF02392732
- Mattila P., Geometry of Sets and Measures in Euclidean Spaces, Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. Zbl0911.28005MR1333890
- Schief A., 10.1090/S0002-9939-1994-1191872-1, Proc. Amer. Math. Soc. 122 (1994), no. 1, 111–115. Zbl0807.28005MR1191872DOI10.1090/S0002-9939-1994-1191872-1
- Stachó L. L., On the volume function of parallel sets, Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 365–374. MR0442202
- Winter S., 10.4064/dm453-0-1, Dissertationes Math., 453, 2008, 66 pages. MR2423952DOI10.4064/dm453-0-1
- Zähle M., (S)PDE on fractals and Gaussian noise, in Recent Developments in Fractals and Related Fields, Trends Math., Birkhäuser/Springer, Cham, 2017, pages 295–312. MR3775469
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.