Linear operator identities in quasigroups

Reza Akhtar

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 1, page 1-9
  • ISSN: 0010-2628

Abstract

top
We study identities of the form L x 0 ϕ 1 ϕ n R x n + 1 = R x n + 1 ϕ σ ( 1 ) ϕ σ ( n ) L x 0 in quasigroups, where n 1 , σ is a permutation of { 1 , ... , n } , and for each i , ϕ i is either L x i or R x i . We prove that in a quasigroup, every such identity implies commutativity. Moreover, if σ is chosen randomly and uniformly, it also satisfies associativity with probability approaching 1 as n .

How to cite

top

Akhtar, Reza. "Linear operator identities in quasigroups." Commentationes Mathematicae Universitatis Carolinae 62 63.1 (2022): 1-9. <http://eudml.org/doc/299278>.

@article{Akhtar2022,
abstract = {We study identities of the form \[ L\_\{x\_0\} \varphi \_1 \cdots \varphi \_n R\_\{x\_\{n+1\}\} = R\_\{x\_\{n+1\}\} \varphi \_\{\sigma (1)\} \cdots \varphi \_\{\sigma (n)\} L\_\{x\_0\} \] in quasigroups, where $n \ge 1$, $\sigma $ is a permutation of $\lbrace 1, \ldots , n\rbrace $, and for each $i$, $\varphi _i$ is either $L_\{x_i\}$ or $R_\{x_i\}$. We prove that in a quasigroup, every such identity implies commutativity. Moreover, if $\sigma $ is chosen randomly and uniformly, it also satisfies associativity with probability approaching $1$ as $n \rightarrow \infty $.},
author = {Akhtar, Reza},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasigroup; linear identity; associativity; commutativity},
language = {eng},
number = {1},
pages = {1-9},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Linear operator identities in quasigroups},
url = {http://eudml.org/doc/299278},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Akhtar, Reza
TI - Linear operator identities in quasigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 1
SP - 1
EP - 9
AB - We study identities of the form \[ L_{x_0} \varphi _1 \cdots \varphi _n R_{x_{n+1}} = R_{x_{n+1}} \varphi _{\sigma (1)} \cdots \varphi _{\sigma (n)} L_{x_0} \] in quasigroups, where $n \ge 1$, $\sigma $ is a permutation of $\lbrace 1, \ldots , n\rbrace $, and for each $i$, $\varphi _i$ is either $L_{x_i}$ or $R_{x_i}$. We prove that in a quasigroup, every such identity implies commutativity. Moreover, if $\sigma $ is chosen randomly and uniformly, it also satisfies associativity with probability approaching $1$ as $n \rightarrow \infty $.
LA - eng
KW - quasigroup; linear identity; associativity; commutativity
UR - http://eudml.org/doc/299278
ER -

References

top
  1. Akhtar R., On generalized associativity in groupoids, Quasigroups Related Systems 24 (2016), no. 1, 1–6. MR3506153
  2. Akhtar R., Symmetric linear operator identities in quasigroups, Comment. Math. Univ. Carolin. 58 (2017), no. 4, 401–417. MR3737114
  3. Akhtar R., Arp A., Kaminski M., Van Exel J., Vernon D., Washington C., The varieties of Bol–Moufang quasigroups defined by a single operation, Quasigroups Related Systems 20 (2012), no. 1, 1–10. MR3013362
  4. Belousov V. D., Systems of quasigroups with generalized identities, Uspehi Mat. Nauk 20 (1965), no. 1 (121), 75–146 (Russian). Zbl0135.03503MR0173724
  5. Krapež A., 10.1007/s000100050177, Aequationes Math. 61 (2001), no. 3, 255–280. Zbl0993.39022MR1833145DOI10.1007/s000100050177
  6. Krapež A., 10.2298/PIM0795053K, Publ. Inst. Math. (Beograd) (N.S.) 81 (95) (2007), 53–67. Zbl1229.39035MR2401314DOI10.2298/PIM0795053K
  7. Krapež A., 10.2298/PIM1307029K, Publ. Inst. Math. (Beograd) (N.S.) 93 (107) (2013), 29–47. MR3089075DOI10.2298/PIM1307029K
  8. Niemenmaa M., Kepka T., 10.1007/BF01299305, Monatsh. Math. 113 (1992), no. 1, 51–57. Zbl0768.20032MR1149060DOI10.1007/BF01299305
  9. Pflugfelder H., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl0715.20043MR1125767
  10. Phillips J. D., Vojtěchovský P., 10.1007/s00012-005-1941-1, Algebra Universalis 54 (2005), no. 3, 259–271. MR2219409DOI10.1007/s00012-005-1941-1
  11. Phillips J. D., Vojtěchovský P., 10.1016/j.jalgebra.2005.07.011, J. Algebra 293 (2005), no. 1, 17–33. MR2173964DOI10.1016/j.jalgebra.2005.07.011
  12. Robbins H., 10.2307/2308012, Amer. Math. Monthly 62 (1955), 26–29. MR0069328DOI10.2307/2308012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.