Linear operator identities in quasigroups
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 1, page 1-9
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAkhtar, Reza. "Linear operator identities in quasigroups." Commentationes Mathematicae Universitatis Carolinae 62 63.1 (2022): 1-9. <http://eudml.org/doc/299278>.
@article{Akhtar2022,
abstract = {We study identities of the form \[ L\_\{x\_0\} \varphi \_1 \cdots \varphi \_n R\_\{x\_\{n+1\}\} = R\_\{x\_\{n+1\}\} \varphi \_\{\sigma (1)\} \cdots \varphi \_\{\sigma (n)\} L\_\{x\_0\} \]
in quasigroups, where $n \ge 1$, $\sigma $ is a permutation of $\lbrace 1, \ldots , n\rbrace $, and for each $i$, $\varphi _i$ is either $L_\{x_i\}$ or $R_\{x_i\}$. We prove that in a quasigroup, every such identity implies commutativity. Moreover, if $\sigma $ is chosen randomly and uniformly, it also satisfies associativity with probability approaching $1$ as $n \rightarrow \infty $.},
author = {Akhtar, Reza},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasigroup; linear identity; associativity; commutativity},
language = {eng},
number = {1},
pages = {1-9},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Linear operator identities in quasigroups},
url = {http://eudml.org/doc/299278},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Akhtar, Reza
TI - Linear operator identities in quasigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 1
SP - 1
EP - 9
AB - We study identities of the form \[ L_{x_0} \varphi _1 \cdots \varphi _n R_{x_{n+1}} = R_{x_{n+1}} \varphi _{\sigma (1)} \cdots \varphi _{\sigma (n)} L_{x_0} \]
in quasigroups, where $n \ge 1$, $\sigma $ is a permutation of $\lbrace 1, \ldots , n\rbrace $, and for each $i$, $\varphi _i$ is either $L_{x_i}$ or $R_{x_i}$. We prove that in a quasigroup, every such identity implies commutativity. Moreover, if $\sigma $ is chosen randomly and uniformly, it also satisfies associativity with probability approaching $1$ as $n \rightarrow \infty $.
LA - eng
KW - quasigroup; linear identity; associativity; commutativity
UR - http://eudml.org/doc/299278
ER -
References
top- Akhtar R., On generalized associativity in groupoids, Quasigroups Related Systems 24 (2016), no. 1, 1–6. MR3506153
- Akhtar R., Symmetric linear operator identities in quasigroups, Comment. Math. Univ. Carolin. 58 (2017), no. 4, 401–417. MR3737114
- Akhtar R., Arp A., Kaminski M., Van Exel J., Vernon D., Washington C., The varieties of Bol–Moufang quasigroups defined by a single operation, Quasigroups Related Systems 20 (2012), no. 1, 1–10. MR3013362
- Belousov V. D., Systems of quasigroups with generalized identities, Uspehi Mat. Nauk 20 (1965), no. 1 (121), 75–146 (Russian). Zbl0135.03503MR0173724
- Krapež A., 10.1007/s000100050177, Aequationes Math. 61 (2001), no. 3, 255–280. Zbl0993.39022MR1833145DOI10.1007/s000100050177
- Krapež A., 10.2298/PIM0795053K, Publ. Inst. Math. (Beograd) (N.S.) 81 (95) (2007), 53–67. Zbl1229.39035MR2401314DOI10.2298/PIM0795053K
- Krapež A., 10.2298/PIM1307029K, Publ. Inst. Math. (Beograd) (N.S.) 93 (107) (2013), 29–47. MR3089075DOI10.2298/PIM1307029K
- Niemenmaa M., Kepka T., 10.1007/BF01299305, Monatsh. Math. 113 (1992), no. 1, 51–57. Zbl0768.20032MR1149060DOI10.1007/BF01299305
- Pflugfelder H., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl0715.20043MR1125767
- Phillips J. D., Vojtěchovský P., 10.1007/s00012-005-1941-1, Algebra Universalis 54 (2005), no. 3, 259–271. MR2219409DOI10.1007/s00012-005-1941-1
- Phillips J. D., Vojtěchovský P., 10.1016/j.jalgebra.2005.07.011, J. Algebra 293 (2005), no. 1, 17–33. MR2173964DOI10.1016/j.jalgebra.2005.07.011
- Robbins H., 10.2307/2308012, Amer. Math. Monthly 62 (1955), 26–29. MR0069328DOI10.2307/2308012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.