The Grothendieck ring of quantum double of quaternion group

Hua Sun; Jia Pang; Yanxi Shen

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 881-896
  • ISSN: 0011-4642

Abstract

top
Let 𝕜 be an algebraically closed field of characteristic p 2 , and let Q 8 be the quaternion group. We describe the structures of all simple modules over the quantum double D ( 𝕜 Q 8 ) of group algebra 𝕜 Q 8 . Moreover, we investigate the tensor product decomposition rules of all simple D ( 𝕜 Q 8 ) -modules. Finally, we describe the Grothendieck ring G 0 ( D ( 𝕜 Q 8 ) ) by generators with relations.

How to cite

top

Sun, Hua, Pang, Jia, and Shen, Yanxi. "The Grothendieck ring of quantum double of quaternion group." Czechoslovak Mathematical Journal 74.3 (2024): 881-896. <http://eudml.org/doc/299302>.

@article{Sun2024,
abstract = {Let $\mathbb \{k\}$ be an algebraically closed field of characteristic $p\ne 2$, and let $Q_8$ be the quaternion group. We describe the structures of all simple modules over the quantum double $D(\mathbb \{k\}Q_8)$ of group algebra $\mathbb \{k\}Q_8$. Moreover, we investigate the tensor product decomposition rules of all simple $D(\mathbb \{k\}Q_8)$-modules. Finally, we describe the Grothendieck ring $G_0(D(\mathbb \{k\}Q_8))$ by generators with relations.},
author = {Sun, Hua, Pang, Jia, Shen, Yanxi},
journal = {Czechoslovak Mathematical Journal},
keywords = {Grothendieck ring; simple module; quantum double; quaternion group},
language = {eng},
number = {3},
pages = {881-896},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Grothendieck ring of quantum double of quaternion group},
url = {http://eudml.org/doc/299302},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Sun, Hua
AU - Pang, Jia
AU - Shen, Yanxi
TI - The Grothendieck ring of quantum double of quaternion group
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 881
EP - 896
AB - Let $\mathbb {k}$ be an algebraically closed field of characteristic $p\ne 2$, and let $Q_8$ be the quaternion group. We describe the structures of all simple modules over the quantum double $D(\mathbb {k}Q_8)$ of group algebra $\mathbb {k}Q_8$. Moreover, we investigate the tensor product decomposition rules of all simple $D(\mathbb {k}Q_8)$-modules. Finally, we describe the Grothendieck ring $G_0(D(\mathbb {k}Q_8))$ by generators with relations.
LA - eng
KW - Grothendieck ring; simple module; quantum double; quaternion group
UR - http://eudml.org/doc/299302
ER -

References

top
  1. Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
  2. Chen, H.-X., 10.1006/jabr.1999.8135, J. Algebra 225 (2000), 391-409. (2000) Zbl0952.16032MR1743667DOI10.1006/jabr.1999.8135
  3. Chen, H.-X., 10.1006/jabr.2002.9144, J. Algebra 251 (2002), 751-789. (2002) Zbl1019.16025MR1919152DOI10.1006/jabr.2002.9144
  4. Chen, H.-X., 10.1081/AGB-200065383, Commun. Algebra 33 (2005), 2809-2825. (2005) Zbl1081.16039MR2159507DOI10.1081/AGB-200065383
  5. Dong, J., 10.1007/s10587-010-0054-y, Czech. Math. J. 60 (2010), 869-879. (2010) Zbl1212.16057MR2672420DOI10.1007/s10587-010-0054-y
  6. Dong, J., Chen, H., 10.1142/S1005386713000096, Algebra Colloq. 20 (2013), 95-108. (2013) Zbl1281.16042MR3020721DOI10.1142/S1005386713000096
  7. Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155. Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
  8. Kondo, H., Saito, Y., 10.1016/j.jalgebra.2011.01.010, J. Algebra 330 (2011), 103-129. (2011) Zbl1273.17019MR2774620DOI10.1016/j.jalgebra.2011.01.010
  9. Liu, G., Oystaeyen, F. Van, Zhang, Y., 10.36045/bbms/1483671626, Bull. Belg. Math. Soc. - Simon Stevin 23 (2016), 779-800. (2016) Zbl1364.17020MR3593575DOI10.36045/bbms/1483671626
  10. Liu, G., Oystaeyen, F. Van, Zhang, Y., 10.1090/tran/6731, Trans. Am. Math. Soc. 369 (2017), 2049-2086. (2017) Zbl1407.17019MR3581227DOI10.1090/tran/6731
  11. Majid, S., 10.1080/00927879108824306, Commun. Algebra 19 (1991), 3061-3073. (1991) Zbl0767.16014MR1132774DOI10.1080/00927879108824306
  12. Mason, G., 10.1017/CBO9780511629297.009, Groups '93 Galway/St. Andrews. Volume 2 London Mathematical Society Lecture Note Series 212. Cambridge University Press, Cambridge (1995). (1995) Zbl0856.20005MR1337285DOI10.1017/CBO9780511629297.009
  13. Montgomery, S., 10.1090/cbms/082, Regional Conference Series in Mathematics 82. AMS, Providence (1993). (1993) Zbl0793.16029MR1243637DOI10.1090/cbms/082
  14. Suter, R., 10.1007/BF02102012, Commun. Math. Phys. 163 (1994), 359-393. (1994) Zbl0851.17015MR1284788DOI10.1007/BF02102012
  15. Witherspoon, S. J., 10.1006/jabr.1996.0014, J. Algebra 179 (1996), 305-329. (1996) Zbl0840.19001MR1367852DOI10.1006/jabr.1996.0014
  16. Xiao, J., 10.4153/CJM-1997-038-4, Can. J. Math. 49 (1997), 772-787. (1997) Zbl0901.17009MR1471056DOI10.4153/CJM-1997-038-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.