Cotorsion pairs in comma categories
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 3, page 715-734
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYuan, Yuan, He, Jian, and Wu, Dejun. "Cotorsion pairs in comma categories." Czechoslovak Mathematical Journal 74.3 (2024): 715-734. <http://eudml.org/doc/299303>.
@article{Yuan2024,
abstract = {Let $\mathcal \{A\}$ and $\mathcal \{B\}$ be abelian categories with enough projective and injective objects, and $T \colon \mathcal \{A\}\rightarrow \mathcal \{B\}$ a left exact additive functor. Then one has a comma category $(\mathopen \{\mathcal \{B\} \downarrow T\})$. It is shown that if $T \colon \mathcal \{A\}\rightarrow \mathcal \{B\}$ is $\mathcal \{X\}$-exact, then $(^\bot \mathcal \{X\}, \mathcal \{X\})$ is a (hereditary) cotorsion pair in $\mathcal \{A\}$ and $(^\bot \mathcal \{Y\}, \mathcal \{Y\})$) is a (hereditary) cotorsion pair in $\mathcal \{B\}$ if and only if $\bigl (\binom\{^\bot \mathcal \{X\}\}\{^\bot \mathcal \{Y\}\} \bigr ), \langle \{\bf h\}(\mathcal \{X\}, \mathcal \{Y\})\rangle )$ is a (hereditary) cotorsion pair in $(\mathopen \{\mathcal \{B\}\downarrow T\})$ and $\mathcal \{X\}$ and $\mathcal \{Y\}$ are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories $\mathcal \{A\}$ and $\mathcal \{B\}$ can induce special preenveloping classes in $(\mathopen \{\mathcal \{B\}\downarrow T\})$.},
author = {Yuan, Yuan, He, Jian, Wu, Dejun},
journal = {Czechoslovak Mathematical Journal},
keywords = {comma category; cocompatible functor; cotorsion pair},
language = {eng},
number = {3},
pages = {715-734},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cotorsion pairs in comma categories},
url = {http://eudml.org/doc/299303},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Yuan, Yuan
AU - He, Jian
AU - Wu, Dejun
TI - Cotorsion pairs in comma categories
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 715
EP - 734
AB - Let $\mathcal {A}$ and $\mathcal {B}$ be abelian categories with enough projective and injective objects, and $T \colon \mathcal {A}\rightarrow \mathcal {B}$ a left exact additive functor. Then one has a comma category $(\mathopen {\mathcal {B} \downarrow T})$. It is shown that if $T \colon \mathcal {A}\rightarrow \mathcal {B}$ is $\mathcal {X}$-exact, then $(^\bot \mathcal {X}, \mathcal {X})$ is a (hereditary) cotorsion pair in $\mathcal {A}$ and $(^\bot \mathcal {Y}, \mathcal {Y})$) is a (hereditary) cotorsion pair in $\mathcal {B}$ if and only if $\bigl (\binom{^\bot \mathcal {X}}{^\bot \mathcal {Y}} \bigr ), \langle {\bf h}(\mathcal {X}, \mathcal {Y})\rangle )$ is a (hereditary) cotorsion pair in $(\mathopen {\mathcal {B}\downarrow T})$ and $\mathcal {X}$ and $\mathcal {Y}$ are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories $\mathcal {A}$ and $\mathcal {B}$ can induce special preenveloping classes in $(\mathopen {\mathcal {B}\downarrow T})$.
LA - eng
KW - comma category; cocompatible functor; cotorsion pair
UR - http://eudml.org/doc/299303
ER -
References
top- Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
- Chen, X.-W., Le, J., 10.1017/prm.2021.8, Proc. R. Soc. Edinb., Sect. A, Math. 152 (2022), 567-591. (2022) Zbl1497.18021MR4430943DOI10.1017/prm.2021.8
- Chen, X.-W., Shen, D., Zhou, G., 10.1017/S0308210518000185, Proc. R. Soc. Edinb., Sect. A, Math. 148 (2018), 1115-1134. (2018) Zbl1403.16008MR3869172DOI10.1017/S0308210518000185
- Fossum, R. M., Griffith, P. A., Reiten, I., 10.1007/bfb0065404, Lecture Notes in Mathematics 456. Springer, Berlin (1975). (1975) Zbl0303.18006MR389981DOI10.1007/bfb0065404
- Gabriel, P., Roiter, A. V., Representations of Finite-Dimensional Algebras, Encyclopaedia of Mathematical Sciences 73. Springer, Berlin (1992). (1992) Zbl0839.16001MR1239447
- Göbel, R., Trlifaj, J., 10.1515/9783110218114, De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin (2012). (2012) Zbl1292.16001MR2985654DOI10.1515/9783110218114
- Hovey, M., 10.1090/conm/436, Interactions Between Homotopy Theory and Algebra Contemporary Mathematics 436. AMS, Providence (2007), 277-296. (2007) Zbl1129.18004MR2355778DOI10.1090/conm/436
- Hu, J., Zhu, H., 10.1007/s11425-020-1790-9, Sci. China, Math. 65 (2022), 933-950. (2022) Zbl1485.18001MR4412784DOI10.1007/s11425-020-1790-9
- Kalck, M., 10.1112/blms/bdu093, Bull. Lond. Math. Soc. 47 (2015), 65-74. (2015) Zbl1323.16012MR3312965DOI10.1112/blms/bdu093
- Marmaridis, N., 10.1080/00927878308822941, Commun. Algebra 11 (1983), 1919-1943. (1983) Zbl0518.16011MR709023DOI10.1080/00927878308822941
- Salce, L., Cotorsion theories for abelian groups, Symposia Mathematica. Volume 23 Academic Press, London (1979), 11-32. (1979) Zbl0426.20044MR0565595
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.