Cotorsion pairs in comma categories

Yuan Yuan; Jian He; Dejun Wu

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 715-734
  • ISSN: 0011-4642

Abstract

top
Let 𝒜 and be abelian categories with enough projective and injective objects, and T : 𝒜 a left exact additive functor. Then one has a comma category ( T ) . It is shown that if T : 𝒜 is 𝒳 -exact, then ( 𝒳 , 𝒳 ) is a (hereditary) cotorsion pair in 𝒜 and ( 𝒴 , 𝒴 ) ) is a (hereditary) cotorsion pair in if and only if 𝒳 𝒴 , 𝐡 ( 𝒳 , 𝒴 ) ) is a (hereditary) cotorsion pair in ( T ) and 𝒳 and 𝒴 are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories 𝒜 and can induce special preenveloping classes in ( T ) .

How to cite

top

Yuan, Yuan, He, Jian, and Wu, Dejun. "Cotorsion pairs in comma categories." Czechoslovak Mathematical Journal 74.3 (2024): 715-734. <http://eudml.org/doc/299303>.

@article{Yuan2024,
abstract = {Let $\mathcal \{A\}$ and $\mathcal \{B\}$ be abelian categories with enough projective and injective objects, and $T \colon \mathcal \{A\}\rightarrow \mathcal \{B\}$ a left exact additive functor. Then one has a comma category $(\mathopen \{\mathcal \{B\} \downarrow T\})$. It is shown that if $T \colon \mathcal \{A\}\rightarrow \mathcal \{B\}$ is $\mathcal \{X\}$-exact, then $(^\bot \mathcal \{X\}, \mathcal \{X\})$ is a (hereditary) cotorsion pair in $\mathcal \{A\}$ and $(^\bot \mathcal \{Y\}, \mathcal \{Y\})$) is a (hereditary) cotorsion pair in $\mathcal \{B\}$ if and only if $\bigl (\binom\{^\bot \mathcal \{X\}\}\{^\bot \mathcal \{Y\}\} \bigr ), \langle \{\bf h\}(\mathcal \{X\}, \mathcal \{Y\})\rangle )$ is a (hereditary) cotorsion pair in $(\mathopen \{\mathcal \{B\}\downarrow T\})$ and $\mathcal \{X\}$ and $\mathcal \{Y\}$ are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories $\mathcal \{A\}$ and $\mathcal \{B\}$ can induce special preenveloping classes in $(\mathopen \{\mathcal \{B\}\downarrow T\})$.},
author = {Yuan, Yuan, He, Jian, Wu, Dejun},
journal = {Czechoslovak Mathematical Journal},
keywords = {comma category; cocompatible functor; cotorsion pair},
language = {eng},
number = {3},
pages = {715-734},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cotorsion pairs in comma categories},
url = {http://eudml.org/doc/299303},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Yuan, Yuan
AU - He, Jian
AU - Wu, Dejun
TI - Cotorsion pairs in comma categories
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 715
EP - 734
AB - Let $\mathcal {A}$ and $\mathcal {B}$ be abelian categories with enough projective and injective objects, and $T \colon \mathcal {A}\rightarrow \mathcal {B}$ a left exact additive functor. Then one has a comma category $(\mathopen {\mathcal {B} \downarrow T})$. It is shown that if $T \colon \mathcal {A}\rightarrow \mathcal {B}$ is $\mathcal {X}$-exact, then $(^\bot \mathcal {X}, \mathcal {X})$ is a (hereditary) cotorsion pair in $\mathcal {A}$ and $(^\bot \mathcal {Y}, \mathcal {Y})$) is a (hereditary) cotorsion pair in $\mathcal {B}$ if and only if $\bigl (\binom{^\bot \mathcal {X}}{^\bot \mathcal {Y}} \bigr ), \langle {\bf h}(\mathcal {X}, \mathcal {Y})\rangle )$ is a (hereditary) cotorsion pair in $(\mathopen {\mathcal {B}\downarrow T})$ and $\mathcal {X}$ and $\mathcal {Y}$ are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories $\mathcal {A}$ and $\mathcal {B}$ can induce special preenveloping classes in $(\mathopen {\mathcal {B}\downarrow T})$.
LA - eng
KW - comma category; cocompatible functor; cotorsion pair
UR - http://eudml.org/doc/299303
ER -

References

top
  1. Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
  2. Chen, X.-W., Le, J., 10.1017/prm.2021.8, Proc. R. Soc. Edinb., Sect. A, Math. 152 (2022), 567-591. (2022) Zbl1497.18021MR4430943DOI10.1017/prm.2021.8
  3. Chen, X.-W., Shen, D., Zhou, G., 10.1017/S0308210518000185, Proc. R. Soc. Edinb., Sect. A, Math. 148 (2018), 1115-1134. (2018) Zbl1403.16008MR3869172DOI10.1017/S0308210518000185
  4. Fossum, R. M., Griffith, P. A., Reiten, I., 10.1007/bfb0065404, Lecture Notes in Mathematics 456. Springer, Berlin (1975). (1975) Zbl0303.18006MR389981DOI10.1007/bfb0065404
  5. Gabriel, P., Roiter, A. V., Representations of Finite-Dimensional Algebras, Encyclopaedia of Mathematical Sciences 73. Springer, Berlin (1992). (1992) Zbl0839.16001MR1239447
  6. Göbel, R., Trlifaj, J., 10.1515/9783110218114, De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin (2012). (2012) Zbl1292.16001MR2985654DOI10.1515/9783110218114
  7. Hovey, M., 10.1090/conm/436, Interactions Between Homotopy Theory and Algebra Contemporary Mathematics 436. AMS, Providence (2007), 277-296. (2007) Zbl1129.18004MR2355778DOI10.1090/conm/436
  8. Hu, J., Zhu, H., 10.1007/s11425-020-1790-9, Sci. China, Math. 65 (2022), 933-950. (2022) Zbl1485.18001MR4412784DOI10.1007/s11425-020-1790-9
  9. Kalck, M., 10.1112/blms/bdu093, Bull. Lond. Math. Soc. 47 (2015), 65-74. (2015) Zbl1323.16012MR3312965DOI10.1112/blms/bdu093
  10. Marmaridis, N., 10.1080/00927878308822941, Commun. Algebra 11 (1983), 1919-1943. (1983) Zbl0518.16011MR709023DOI10.1080/00927878308822941
  11. Salce, L., Cotorsion theories for abelian groups, Symposia Mathematica. Volume 23 Academic Press, London (1979), 11-32. (1979) Zbl0426.20044MR0565595

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.