Regularizing effect of the interplay between coefficients in some noncoercive integral functionals
Aiping Zhang; Zesheng Feng; Hongya Gao
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 3, page 915-925
- ISSN: 0011-4642
Access Full Article
topAbstract
top
where , is a Carathéodory function such that is convex, and there exist constants and such that
for almost all , all and all . We show that, even if and only belong to , the interplay
implies the existence of a minimizer which belongs to .
How to cite
topReferences
top- Arcoya, D., Boccardo, L., 10.1016/j.jfa.2014.11.011, J. Func. Anal. 268 (2015), 1153-1166. (2015) Zbl1317.35082MR3304596DOI10.1016/j.jfa.2014.11.011
- Arcoya, D., Boccardo, L., 10.1016/j.matpur.2017.08.001, J. Math. Pures Appl. (9) 111 (2018), 106-125. (2018) Zbl1390.35067MR3760750DOI10.1016/j.matpur.2017.08.001
- Boccardo, L., Croce, G., 10.1515/9783110315424, De Gruyter Studies in Mathematics 55. Walter De Gruyter, Berlin (2013). (2013) Zbl1293.35001MR3154599DOI10.1515/9783110315424
- Boccardo, L., Orsina, L., Existence and regularity of minima for integral functionals noncoercive in the energy space, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 95-130. (1997) Zbl1015.49014MR1655511
- Capone, C., Napoli, A. Passarelli di, 10.57262/ade029-0910-757, Adv. Differ. Equ. 29 (2024), 757-782. (2024) Zbl07854804MR4740327DOI10.57262/ade029-0910-757
- Capone, C., Radice, T., 10.1007/s41808-020-00082-w, J. Elliptic Parabol. Equ. 6 (2020), 751-771. (2020) Zbl1451.35042MR4169451DOI10.1007/s41808-020-00082-w
- Degiovanni, M., Marzocchi, M., 10.1016/j.na.2019.03.008, Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 206-215. (2019) Zbl1421.35130MR3928322DOI10.1016/j.na.2019.03.008
- Giusti, E., 10.1142/5002, World Scientific, Singapore (2003). (2003) Zbl1028.49001MR1962933DOI10.1142/5002
- Li, Z., 10.1007/s10440-018-0217-7, Acta Appl. Math. 163 (2019), 145-156. (2019) Zbl1423.35206MR4008700DOI10.1007/s10440-018-0217-7
- Moreno-Mérida, L., Porzio, M. M., 10.3233/ASY-191558, Asymptotic Anal. 118 (2020), 143-159. (2020) Zbl1454.35206MR4113595DOI10.3233/ASY-191558
- Radice, T., 10.4064/sm230104-18-3, Stud. Math. 276 (2024), 1-17. (2024) Zbl7887996MR4756832DOI10.4064/sm230104-18-3
- Zhang, C., Zhou, S., 10.5186/aasfm.2017.4205, Ann. Acad. Sci. Fenn., Math. 42 (2017), 95-103. (2017) Zbl1367.35072MR3558517DOI10.5186/aasfm.2017.4205