Homological dimensions for endomorphism algebras of Gorenstein projective modules

Aiping Zhang; Xueping Lei

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 675-682
  • ISSN: 0011-4642

Abstract

top
Let A be a CM-finite Artin algebra with a Gorenstein-Auslander generator E , M be a Gorenstein projective A -module and B = End A M . We give an upper bound for the finitistic dimension of B in terms of homological data of M . Furthermore, if A is n -Gorenstein for 2 n < , then we show the global dimension of B is less than or equal to n plus the B -projective dimension of Hom A ( M , E ) . As an application, the global dimension of End A E is less than or equal to n .

How to cite

top

Zhang, Aiping, and Lei, Xueping. "Homological dimensions for endomorphism algebras of Gorenstein projective modules." Czechoslovak Mathematical Journal 74.3 (2024): 675-682. <http://eudml.org/doc/299305>.

@article{Zhang2024,
abstract = {Let $A$ be a CM-finite Artin algebra with a Gorenstein-Auslander generator $E$, $M$ be a Gorenstein projective $A$-module and $B = \{\rm End\}_A M$. We give an upper bound for the finitistic dimension of $B$ in terms of homological data of $M$. Furthermore, if $A$ is $n$-Gorenstein for $2 \le n < \infty $, then we show the global dimension of $B$ is less than or equal to $n$ plus the $B$-projective dimension of $\{\rm Hom\}_A(M, E).$ As an application, the global dimension of $\{\rm End\}_A E$ is less than or equal to $n$.},
author = {Zhang, Aiping, Lei, Xueping},
journal = {Czechoslovak Mathematical Journal},
keywords = {finitistic dimension; Gorenstein projective module; endomorphism algebra},
language = {eng},
number = {3},
pages = {675-682},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homological dimensions for endomorphism algebras of Gorenstein projective modules},
url = {http://eudml.org/doc/299305},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Zhang, Aiping
AU - Lei, Xueping
TI - Homological dimensions for endomorphism algebras of Gorenstein projective modules
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 675
EP - 682
AB - Let $A$ be a CM-finite Artin algebra with a Gorenstein-Auslander generator $E$, $M$ be a Gorenstein projective $A$-module and $B = {\rm End}_A M$. We give an upper bound for the finitistic dimension of $B$ in terms of homological data of $M$. Furthermore, if $A$ is $n$-Gorenstein for $2 \le n < \infty $, then we show the global dimension of $B$ is less than or equal to $n$ plus the $B$-projective dimension of ${\rm Hom}_A(M, E).$ As an application, the global dimension of ${\rm End}_A E$ is less than or equal to $n$.
LA - eng
KW - finitistic dimension; Gorenstein projective module; endomorphism algebra
UR - http://eudml.org/doc/299305
ER -

References

top
  1. Auslander, M., Bridger, M., 10.1090/memo/0094, Memoirs of the American Mathematical Society 94. AMS, Providence (1969). (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
  2. Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
  3. Avramov, L. L., Martsinkovsky, A., 10.1112/S0024611502013527, Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. (2002) Zbl1047.16002MR1912056DOI10.1112/S0024611502013527
  4. Christensen, L. W., 10.1007/BFb0103980, Lecture Notes in Mathematics 1747. Springer, Berlin (2000). (2000) Zbl0965.13010MR1799866DOI10.1007/BFb0103980
  5. Christensen, L. W., Foxby, H.-B., Frankild, A., 10.1006/jabr.2001.9115, J. Algebra 251 (2002), 479-502. (2002) Zbl1073.13501MR1900297DOI10.1006/jabr.2001.9115
  6. Christensen, L. W., Frankild, A., Holm, H., 10.1016/j.jalgebra.2005.12.007, J. Algebra 302 (2006), 231-279. (2006) Zbl1104.13008MR2236602DOI10.1016/j.jalgebra.2005.12.007
  7. Dlab, V., Ringel, C. M., 10.1090/S0002-9939-1989-0943793-2, Proc. Am. Math. Soc. 107 (1989), 1-5. (1989) Zbl0681.16015MR0943793DOI10.1090/S0002-9939-1989-0943793-2
  8. Enochs, E. E., Jenda, O. M. G., 10.1080/00927879308824744, Commun. Algebra 21 (1993), 3489-3501. (1993) Zbl0783.13011MR1231612DOI10.1080/00927879308824744
  9. Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
  10. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
  11. Enochs, E. E., Jenda, O. M. G., Xu, J., 10.1090/S0002-9947-96-01624-8, Trans. Am. Math. Soc. 348 (1996), 3223-3234. (1996) Zbl0862.13004MR1355071DOI10.1090/S0002-9947-96-01624-8
  12. Eshraghi, H., 10.1016/j.jalgebra.2017.10.003, J. Algebra 494 (2018), 77-91. (2018) Zbl1437.16006MR3723171DOI10.1016/j.jalgebra.2017.10.003
  13. Foxby, H.-B., Gorenstein dimensions over Cohen-Macaulay rings, Commutative Algebra Runge. Vechtaer Universitätsschriften, Cloppenburg (1994), 59-63. (1994) Zbl0834.13014
  14. Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
  15. Huang, C., Huang, Z., 10.1016/j.jalgebra.2010.10.010, J. Algebra 324 (2010), 3408-3419. (2010) Zbl1216.16002MR2735390DOI10.1016/j.jalgebra.2010.10.010
  16. Huang, Z., Sun, J., 10.1007/s10474-013-0312-1, Acta Math. Hung. 140 (2013), 60-70. (2013) Zbl1311.16006MR3123863DOI10.1007/s10474-013-0312-1
  17. Igusa, K., Todorov, G., 10.1090/fic/045, Representations of Algebras and Related Topics Fields Institute Communications 45. AMS, Providence (2005), 201-204. (2005) Zbl1082.16011MR2146250DOI10.1090/fic/045
  18. Li, Z.-W., Zhang, P., 10.1016/j.aim.2009.09.003, Adv. Math. 223 (2010), 728-734. (2010) Zbl1184.16011MR2565547DOI10.1016/j.aim.2009.09.003
  19. Psaroudakis, C., 10.1016/j.jalgebra.2013.09.020, J. Algebra 398 (2014), 63-110. (2014) Zbl1314.18016MR3123754DOI10.1016/j.jalgebra.2013.09.020
  20. Wei, J., 10.1016/j.jalgebra.2008.03.017, J. Algebra 320 (2008), 116-127. (2008) Zbl1160.16003MR2417981DOI10.1016/j.jalgebra.2008.03.017
  21. Xi, C., 10.1016/j.jalgebra.2008.01.021, J. Algebra 319 (2008), 3666-3688. (2008) Zbl1193.16006MR2407846DOI10.1016/j.jalgebra.2008.01.021
  22. Xu, D., 10.1016/j.jalgebra.2014.05.020, J. Algebra 44 (2014), 175-189. (2014) Zbl1330.16003MR3223395DOI10.1016/j.jalgebra.2014.05.020
  23. Zhang, A., 10.1142/S0219498818501773, J. Algebra Appl. 17 (2018), Article ID 1850177, 6 pages. (2018) Zbl1418.16004MR3846425DOI10.1142/S0219498818501773
  24. Zhang, A., Zhang, S., 10.1016/j.jalgebra.2007.12.011, J. Algebra 320 (2008), 253-258. (2008) Zbl1176.16014MR2417987DOI10.1016/j.jalgebra.2007.12.011
  25. Zhang, P., Triangulated Categories and Derived Categories, Science Press, Beijing (2015), Chinese. (2015) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.