Homological dimensions for endomorphism algebras of Gorenstein projective modules
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 3, page 675-682
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Aiping, and Lei, Xueping. "Homological dimensions for endomorphism algebras of Gorenstein projective modules." Czechoslovak Mathematical Journal 74.3 (2024): 675-682. <http://eudml.org/doc/299305>.
@article{Zhang2024,
abstract = {Let $A$ be a CM-finite Artin algebra with a Gorenstein-Auslander generator $E$, $M$ be a Gorenstein projective $A$-module and $B = \{\rm End\}_A M$. We give an upper bound for the finitistic dimension of $B$ in terms of homological data of $M$. Furthermore, if $A$ is $n$-Gorenstein for $2 \le n < \infty $, then we show the global dimension of $B$ is less than or equal to $n$ plus the $B$-projective dimension of $\{\rm Hom\}_A(M, E).$ As an application, the global dimension of $\{\rm End\}_A E$ is less than or equal to $n$.},
author = {Zhang, Aiping, Lei, Xueping},
journal = {Czechoslovak Mathematical Journal},
keywords = {finitistic dimension; Gorenstein projective module; endomorphism algebra},
language = {eng},
number = {3},
pages = {675-682},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homological dimensions for endomorphism algebras of Gorenstein projective modules},
url = {http://eudml.org/doc/299305},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Zhang, Aiping
AU - Lei, Xueping
TI - Homological dimensions for endomorphism algebras of Gorenstein projective modules
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 675
EP - 682
AB - Let $A$ be a CM-finite Artin algebra with a Gorenstein-Auslander generator $E$, $M$ be a Gorenstein projective $A$-module and $B = {\rm End}_A M$. We give an upper bound for the finitistic dimension of $B$ in terms of homological data of $M$. Furthermore, if $A$ is $n$-Gorenstein for $2 \le n < \infty $, then we show the global dimension of $B$ is less than or equal to $n$ plus the $B$-projective dimension of ${\rm Hom}_A(M, E).$ As an application, the global dimension of ${\rm End}_A E$ is less than or equal to $n$.
LA - eng
KW - finitistic dimension; Gorenstein projective module; endomorphism algebra
UR - http://eudml.org/doc/299305
ER -
References
top- Auslander, M., Bridger, M., 10.1090/memo/0094, Memoirs of the American Mathematical Society 94. AMS, Providence (1969). (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
- Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
- Avramov, L. L., Martsinkovsky, A., 10.1112/S0024611502013527, Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. (2002) Zbl1047.16002MR1912056DOI10.1112/S0024611502013527
- Christensen, L. W., 10.1007/BFb0103980, Lecture Notes in Mathematics 1747. Springer, Berlin (2000). (2000) Zbl0965.13010MR1799866DOI10.1007/BFb0103980
- Christensen, L. W., Foxby, H.-B., Frankild, A., 10.1006/jabr.2001.9115, J. Algebra 251 (2002), 479-502. (2002) Zbl1073.13501MR1900297DOI10.1006/jabr.2001.9115
- Christensen, L. W., Frankild, A., Holm, H., 10.1016/j.jalgebra.2005.12.007, J. Algebra 302 (2006), 231-279. (2006) Zbl1104.13008MR2236602DOI10.1016/j.jalgebra.2005.12.007
- Dlab, V., Ringel, C. M., 10.1090/S0002-9939-1989-0943793-2, Proc. Am. Math. Soc. 107 (1989), 1-5. (1989) Zbl0681.16015MR0943793DOI10.1090/S0002-9939-1989-0943793-2
- Enochs, E. E., Jenda, O. M. G., 10.1080/00927879308824744, Commun. Algebra 21 (1993), 3489-3501. (1993) Zbl0783.13011MR1231612DOI10.1080/00927879308824744
- Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
- Enochs, E. E., Jenda, O. M. G., Xu, J., 10.1090/S0002-9947-96-01624-8, Trans. Am. Math. Soc. 348 (1996), 3223-3234. (1996) Zbl0862.13004MR1355071DOI10.1090/S0002-9947-96-01624-8
- Eshraghi, H., 10.1016/j.jalgebra.2017.10.003, J. Algebra 494 (2018), 77-91. (2018) Zbl1437.16006MR3723171DOI10.1016/j.jalgebra.2017.10.003
- Foxby, H.-B., Gorenstein dimensions over Cohen-Macaulay rings, Commutative Algebra Runge. Vechtaer Universitätsschriften, Cloppenburg (1994), 59-63. (1994) Zbl0834.13014
- Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
- Huang, C., Huang, Z., 10.1016/j.jalgebra.2010.10.010, J. Algebra 324 (2010), 3408-3419. (2010) Zbl1216.16002MR2735390DOI10.1016/j.jalgebra.2010.10.010
- Huang, Z., Sun, J., 10.1007/s10474-013-0312-1, Acta Math. Hung. 140 (2013), 60-70. (2013) Zbl1311.16006MR3123863DOI10.1007/s10474-013-0312-1
- Igusa, K., Todorov, G., 10.1090/fic/045, Representations of Algebras and Related Topics Fields Institute Communications 45. AMS, Providence (2005), 201-204. (2005) Zbl1082.16011MR2146250DOI10.1090/fic/045
- Li, Z.-W., Zhang, P., 10.1016/j.aim.2009.09.003, Adv. Math. 223 (2010), 728-734. (2010) Zbl1184.16011MR2565547DOI10.1016/j.aim.2009.09.003
- Psaroudakis, C., 10.1016/j.jalgebra.2013.09.020, J. Algebra 398 (2014), 63-110. (2014) Zbl1314.18016MR3123754DOI10.1016/j.jalgebra.2013.09.020
- Wei, J., 10.1016/j.jalgebra.2008.03.017, J. Algebra 320 (2008), 116-127. (2008) Zbl1160.16003MR2417981DOI10.1016/j.jalgebra.2008.03.017
- Xi, C., 10.1016/j.jalgebra.2008.01.021, J. Algebra 319 (2008), 3666-3688. (2008) Zbl1193.16006MR2407846DOI10.1016/j.jalgebra.2008.01.021
- Xu, D., 10.1016/j.jalgebra.2014.05.020, J. Algebra 44 (2014), 175-189. (2014) Zbl1330.16003MR3223395DOI10.1016/j.jalgebra.2014.05.020
- Zhang, A., 10.1142/S0219498818501773, J. Algebra Appl. 17 (2018), Article ID 1850177, 6 pages. (2018) Zbl1418.16004MR3846425DOI10.1142/S0219498818501773
- Zhang, A., Zhang, S., 10.1016/j.jalgebra.2007.12.011, J. Algebra 320 (2008), 253-258. (2008) Zbl1176.16014MR2417987DOI10.1016/j.jalgebra.2007.12.011
- Zhang, P., Triangulated Categories and Derived Categories, Science Press, Beijing (2015), Chinese. (2015)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.