Non-weight modules over the super Schrödinger algebra

Xinyue Wang; Liangyun Chen; Yao Ma

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 647-664
  • ISSN: 0011-4642

Abstract

top
We construct a family of non-weight modules which are free U ( 𝔥 ) -modules of rank 2 over the N = 1 super Schrödinger algebra in ( 1 + 1 ) -dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free U ( 𝔥 ) -modules of rank 2 over 𝔬𝔰𝔭 ( 1 | 2 ) are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.

How to cite

top

Wang, Xinyue, Chen, Liangyun, and Ma, Yao. "Non-weight modules over the super Schrödinger algebra." Czechoslovak Mathematical Journal 74.3 (2024): 647-664. <http://eudml.org/doc/299307>.

@article{Wang2024,
abstract = {We construct a family of non-weight modules which are free $U(\mathfrak \{h\})$-modules of rank 2 over the $N=1$ super Schrödinger algebra in $(1+1)$-dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free $U(\mathfrak \{h\})$-modules of rank 2 over $\mathfrak \{osp\}(1|2)$ are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.},
author = {Wang, Xinyue, Chen, Liangyun, Ma, Yao},
journal = {Czechoslovak Mathematical Journal},
keywords = {super Schrödinger algebra; simple module; U($\mathfrak \{h\}$)-free module; non-weight module},
language = {eng},
number = {3},
pages = {647-664},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non-weight modules over the super Schrödinger algebra},
url = {http://eudml.org/doc/299307},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Wang, Xinyue
AU - Chen, Liangyun
AU - Ma, Yao
TI - Non-weight modules over the super Schrödinger algebra
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 647
EP - 664
AB - We construct a family of non-weight modules which are free $U(\mathfrak {h})$-modules of rank 2 over the $N=1$ super Schrödinger algebra in $(1+1)$-dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free $U(\mathfrak {h})$-modules of rank 2 over $\mathfrak {osp}(1|2)$ are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.
LA - eng
KW - super Schrödinger algebra; simple module; U($\mathfrak {h}$)-free module; non-weight module
UR - http://eudml.org/doc/299307
ER -

References

top
  1. Aizawa, N., 10.1088/1742-6596/284/1/012007, J. Phys., Conf. Ser. 284 (2011), 12007-12016. (2011) MR2791131DOI10.1088/1742-6596/284/1/012007
  2. Aizawa, N., 10.1063/1.3533920, J. Math. Phys. 52 (2011), Article ID 013509, 14 pages. (2011) Zbl1314.22006MR2791131DOI10.1063/1.3533920
  3. Ballesteros, A., Herranz, F., Parashar, P., 10.1088/0305-4470/33/17/304, J. Phys. A, Math. Gen. 33 (2000), 3445-3465. (2000) Zbl0999.81028MR1766687DOI10.1088/0305-4470/33/17/304
  4. Barut, A. O., Xu, B.-W., 10.1016/0375-9601(81)90188-2, Phys. Lett. A 82 (1981), 218-220. (1981) MR0608779DOI10.1016/0375-9601(81)90188-2
  5. Bavula, V., Oystaeyen, F. van, 10.1016/S0022-4049(99)00024-9, J. Pure Appl. Algebra 150 (2000), 41-52. (2000) Zbl1006.17009MR1762919DOI10.1016/S0022-4049(99)00024-9
  6. Cai, Y., Gao, Y., Wang, Y., 10.1007/s11425-015-5009-1, Sci. China Math. 58 (2015), 2477-2488. (2015) Zbl1403.17008MR3429261DOI10.1007/s11425-015-5009-1
  7. Cai, Y., Tan, H., Zhao, K., 10.1360/N012016-00181, Sci. Sin., Math. 47 (2017), 1491-1514 Chinese. (2017) Zbl1487.17048DOI10.1360/N012016-00181
  8. Cai, Y., Tan, H., Zhao, K., 10.1016/j.jalgebra.2019.11.014, J. Algebra 547 (2020), 95-115. (2020) Zbl1468.17034MR4038644DOI10.1016/j.jalgebra.2019.11.014
  9. Cai, Y., Zhao, K., Module structure on 𝒰 ( H ) for basic Lie superalgebras, Toyama Math. J. 37 (2015), 55-72. (2015) Zbl1395.17017MR3468990
  10. Chen, H., Dai, X., Liu, M., 10.1016/j.jpaa.2022.107030, J. Pure Appl. Algebra 226 (2022), Article ID 107030, 14 pages. (2022) Zbl1510.17015MR4379333DOI10.1016/j.jpaa.2022.107030
  11. Chen, H., Guo, X., 10.1016/j.jalgebra.2016.02.020, J. Algebra 457 (2016), 73-105. (2016) Zbl1338.17024MR3490078DOI10.1016/j.jalgebra.2016.02.020
  12. Chen, H., Guo, X., 10.1142/S0219498817500979, J. Algebra Appl. 16 (2017), Article ID 1750097, 16 pages. (2017) Zbl1407.17024MR3634102DOI10.1142/S0219498817500979
  13. Chen, H., Wang, L., 10.1016/j.jalgebra.2021.10.024, J. Algebra 591 (2022), 360-378. (2022) Zbl1492.16031MR4337804DOI10.1016/j.jalgebra.2021.10.024
  14. Chen, Q., Cai, Y., 10.1142/S0129167X15500706, Int. J. Math. 26 (2015), Article ID 1550070, 16 pages. (2015) Zbl1371.17024MR3391657DOI10.1142/S0129167X15500706
  15. Chen, Q., Han, J., 10.1063/1.5100918, J. Math. Phys. 60 (2019), Article ID 071707, 9 pages. (2019) Zbl1416.81077MR3985468DOI10.1063/1.5100918
  16. Duval, C., Horváthy, P., 10.1063/1.530521, J. Math. Phys. 35 (1994), 2516-2538. (1994) Zbl0823.17002MR1271944DOI10.1063/1.530521
  17. Gao, D., Ma, Y., Zhao, K., 10.1007/s11425-021-1939-5, Sci. China, Math. 65 (2022), 2243-2254. (2022) Zbl1501.17008MR4499515DOI10.1007/s11425-021-1939-5
  18. Guo, X., Wang, M., Liu, X., 10.1016/j.geomphys.2021.104333, J. Geom. Phys. 169 (2021), Article ID 104333, 10 pages. (2021) Zbl1476.17005MR4297036DOI10.1016/j.geomphys.2021.104333
  19. Han, J., Chen, Q., Su, Y., 10.1016/j.laa.2016.11.002, Linear Algebra Appl. 515 (2017), 11-23. (2017) Zbl1403.17028MR3588533DOI10.1016/j.laa.2016.11.002
  20. Lu, H., Sun, J., Zhang, H., 10.1063/5.0139069, J. Math. Phys. 64 (2023), Article ID 061703, 16 pages. (2023) Zbl1516.17023MR4599954DOI10.1063/5.0139069
  21. Nakayama, Y., 10.1088/1126-6708/2008/10/083, J. High Energy Phys. 2008 (2008), Article ID 083, 13 pages. (2008) Zbl1245.81282MR2452962DOI10.1088/1126-6708/2008/10/083
  22. Niederer, U., 10.5169/seals-114417, Helv. Phys. Acta 45 (1972), 802-810. (1972) MR0400948DOI10.5169/seals-114417
  23. Nilsson, J., 10.1016/j.jalgebra.2014.09.036, J. Algebra 424 (2015), 294-329. (2015) Zbl1352.17009MR3293222DOI10.1016/j.jalgebra.2014.09.036
  24. Martín, F. J. Plaza, Prieto, C. Tejero, 10.1016/j.jalgebra.2016.10.012, J. Algebra 472 (2017), 172-194. (2017) Zbl1407.17011MR3584874DOI10.1016/j.jalgebra.2016.10.012
  25. Sakaguchi, M., Yoshida, K., 10.1063/1.2998205, J. Math. Phys. 49 (2008), Article ID 102302, 13 pages. (2008) Zbl1152.81600MR2464610DOI10.1063/1.2998205
  26. Su, Y., Yue, Q., Zhu, X., 10.48550/arXiv.2101.10606, Available at https://arxiv.org/abs/2101.10606 (2021), 18 pages. (2021) DOI10.48550/arXiv.2101.10606
  27. Tan, H., Zhao, K., 10.1007/s10468-017-9738-4, Algebr. Represent. Theory 21 (2018), 787-806. (2018) Zbl1446.17018MR3826727DOI10.1007/s10468-017-9738-4
  28. Wang, H., Xia, C., Zhang, X., 10.1016/j.geomphys.2023.104775, J. Geom. Phys. 186 (2023), Article ID 104775, 12 pages. (2023) Zbl1517.17011MR4550285DOI10.1016/j.geomphys.2023.104775
  29. Wang, H., Xia, C., Zhang, X., 10.1016/j.geomphys.2023.105092, J. Geom. Phys. 197 (2024), Article ID 105092, 12 pages. (2024) Zbl07799735MR4685189DOI10.1016/j.geomphys.2023.105092
  30. Wang, Y., Zhang, H., 10.48550/arXiv.1809.05236, Available at https://arxiv.org/abs/1809.05236 (2018), 16 pages. (2018) MR4197315DOI10.48550/arXiv.1809.05236
  31. Williamson, S., 10.1016/j.jalgebra.2020.10.035, J. Algebra 569 (2021), 180-194. (2021) Zbl1481.17014MR4187233DOI10.1016/j.jalgebra.2020.10.035
  32. Xie, Q., Sun, J., 10.1515/forum-2022-0267, Forum Math. 35 (2023), 1279-1300. (2023) Zbl07739176MR4635355DOI10.1515/forum-2022-0267
  33. Xie, Q., Sun, J., Yang, H., 10.1063/5.0094552, J. Math. Phys. 63 (2022), Article ID 061701, 21 pages. (2022) Zbl1508.17032MR4430920DOI10.1063/5.0094552
  34. Yang, H., Yao, Y., Xia, L., 10.1016/j.jalgebra.2019.11.025, J. Algebra 547 (2020), 538-555. (2020) Zbl1461.17028MR4041529DOI10.1016/j.jalgebra.2019.11.025
  35. Yang, H., Yao, Y., Xia, L., 10.1016/j.jpaa.2020.106529, J. Pure Appl. Algebra 225 (2021), Article ID 106529, 19 pages. (2021) Zbl1498.17020MR4137717DOI10.1016/j.jpaa.2020.106529
  36. Zhang, X., Cai, Y., Wang, Y., 10.1063/1.4894506, J. Math. Phys. 55 (2014), Article ID 091701, 13 pages. (2014) Zbl1297.81082MR3390772DOI10.1063/1.4894506

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.