A remark on a Diophantine equation of S. S. Pillai

Azizul Hoque

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 897-903
  • ISSN: 0011-4642

Abstract

top
S. S. Pillai proved that for a fixed positive integer a , the exponential Diophantine equation x y - y x = a , min ( x , y ) > 1 , has only finitely many solutions in integers x and y . We prove that when a is of the form 2 z 2 , the above equation has no solution in integers x and y with gcd ( x , y ) = 1 .

How to cite

top

Hoque, Azizul. "A remark on a Diophantine equation of S. S. Pillai." Czechoslovak Mathematical Journal 74.3 (2024): 897-903. <http://eudml.org/doc/299312>.

@article{Hoque2024,
abstract = {S. S. Pillai proved that for a fixed positive integer $a$, the exponential Diophantine equation $x^y-y^x= a$, $\min (x,y)>1$, has only finitely many solutions in integers $x$ and $y$. We prove that when $a$ is of the form $2z^2$, the above equation has no solution in integers $x$ and $y$ with $\gcd (x,y)=1$.},
author = {Hoque, Azizul},
journal = {Czechoslovak Mathematical Journal},
keywords = {Pillai's Diophantine equation; Lehmer sequence; primitive divisor},
language = {eng},
number = {3},
pages = {897-903},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A remark on a Diophantine equation of S. S. Pillai},
url = {http://eudml.org/doc/299312},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Hoque, Azizul
TI - A remark on a Diophantine equation of S. S. Pillai
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 897
EP - 903
AB - S. S. Pillai proved that for a fixed positive integer $a$, the exponential Diophantine equation $x^y-y^x= a$, $\min (x,y)>1$, has only finitely many solutions in integers $x$ and $y$. We prove that when $a$ is of the form $2z^2$, the above equation has no solution in integers $x$ and $y$ with $\gcd (x,y)=1$.
LA - eng
KW - Pillai's Diophantine equation; Lehmer sequence; primitive divisor
UR - http://eudml.org/doc/299312
ER -

References

top
  1. Bilu, Y., Hanrot, G., Voutier, P. M., 10.1515/crll.2001.080, J. Reine Angew. Math. 539 (2001), 75-122. (2001) Zbl0995.11010MR1863855DOI10.1515/crll.2001.080
  2. Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
  3. Cohen, H., 10.1007/978-3-662-02945-9, Graduate Texts in Mathematics 138. Springer, Berlin (1993). (1993) Zbl0786.11071MR1228206DOI10.1007/978-3-662-02945-9
  4. Cohn, J. H. E., Square Fibonacci numbers, etc, Fibonacci Q. 2 (1964), 109-113. (1964) Zbl0126.07201MR0161819
  5. Hoque, A., 10.1007/s10998-023-00564-z, Period. Math. Hung. 88 (2024), 418-428. (2024) Zbl7880178MR4751334DOI10.1007/s10998-023-00564-z
  6. Hua, L. K., 10.1007/978-3-642-68130-1, Springer, Berlin (1982). (1982) Zbl0483.10001MR665428DOI10.1007/978-3-642-68130-1
  7. Le, M., 10.1216/rmjm/1187453105, Rocky Mt. J. Math. 37 (2007), 1181-1185. (2007) Zbl1146.11019MR2360292DOI10.1216/rmjm/1187453105
  8. Luca, F., Mignotte, M., 10.1216/rmjm/1022009287, Rocky Mt. J. Math. 30 (2000), 651-661. (2000) Zbl1014.11024MR1787004DOI10.1216/rmjm/1022009287
  9. Pillai, S. S., On the indeterminate equation x y - y x = a , Annamalai Univ. J. 1 (1932), 59-61. (1932) Zbl0005.05302
  10. Robbins, N., Fibonacci numbers of the form c x 2 , where 1 c 1000 , Fibonacci Q. 28 (1990), 306-315. (1990) Zbl0728.11013MR1077496
  11. Voutier, P. M., 10.1090/S0025-5718-1995-1284673-6, Math. Comput. 64 (1995), 869-888. (1995) Zbl0832.11009MR1284673DOI10.1090/S0025-5718-1995-1284673-6
  12. Waldschmidt, M., Perfect powers: Pillai's works and their developments, Collected works of S. Sivasankaranarayana Pillai. Volume 1 Ramanujan Mathematical Society, Mysore (2010), xxii--xlvii. (2010) MR2766491
  13. Yuan, P., 10.1016/S0019-3577(05)80030-8, Indag. Math., New Ser. 16 (2005), 301-320. (2005) Zbl1088.11024MR2319301DOI10.1016/S0019-3577(05)80030-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.