A note on the Π -property of some subgroups of finite groups

Zhengtian Qiu; Guiyun Chen; Jianjun Liu

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 943-953
  • ISSN: 0011-4642

Abstract

top
Let H be a subgroup of a finite group G . We say that H satisfies the Π -property in G if for any chief factor L / K of G , | G / K : N G / K ( H K / K L / K ) | is a π ( H K / K L / K ) -number. We obtain some criteria for the p -supersolubility or p -nilpotency of a finite group and extend some known results by concerning some subgroups that satisfy the Π -property.

How to cite

top

Qiu, Zhengtian, Chen, Guiyun, and Liu, Jianjun. "A note on the $\Pi $-property of some subgroups of finite groups." Czechoslovak Mathematical Journal 74.3 (2024): 943-953. <http://eudml.org/doc/299315>.

@article{Qiu2024,
abstract = {Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $ |G/K : N_\{G/K\}(HK/K\cap L/K )| $ is a $\pi (HK/K\cap L/K)$-number. We obtain some criteria for the $p$-supersolubility or $p$-nilpotency of a finite group and extend some known results by concerning some subgroups that satisfy the $\Pi $-property.},
author = {Qiu, Zhengtian, Chen, Guiyun, Liu, Jianjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite group; $p$-supersoluble group; $p$-nilpotent group; the $\Pi $-property},
language = {eng},
number = {3},
pages = {943-953},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the $\Pi $-property of some subgroups of finite groups},
url = {http://eudml.org/doc/299315},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Qiu, Zhengtian
AU - Chen, Guiyun
AU - Liu, Jianjun
TI - A note on the $\Pi $-property of some subgroups of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 943
EP - 953
AB - Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $ |G/K : N_{G/K}(HK/K\cap L/K )| $ is a $\pi (HK/K\cap L/K)$-number. We obtain some criteria for the $p$-supersolubility or $p$-nilpotency of a finite group and extend some known results by concerning some subgroups that satisfy the $\Pi $-property.
LA - eng
KW - finite group; $p$-supersoluble group; $p$-nilpotent group; the $\Pi $-property
UR - http://eudml.org/doc/299315
ER -

References

top
  1. Ahmad, A. Y. Alsheik, Jaraden, J. J., Skiba, A. N., 10.1142/S1005386707000041, Algebra Colloq. 14 (2007), 25-36 9999DOI99999 10.1142/S1005386707000041 . (2007) Zbl1126.20012MR2278107DOI10.1142/S1005386707000041
  2. Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M., Products of Finite Groups, de Gruyter Expositions in Mathematics 53. Walter de Gruyter, Berlin (2010),9999DOI99999 10.1515/9783110220612 . (2010) Zbl1206.20019MR2762634
  3. Chen, Z., On a theorem of Srinivasan, J. Southwest Normal Univ., Ser. B 12 (1987), 1-4 Chinese. (1987) Zbl0732.20008
  4. Doerk, K., Hawkes, T., Finite Soluble Groups, de Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992),9999DOI99999 10.1515/9783110870138 . (1992) Zbl0753.20001MR1169099
  5. Gorenstein, D., Finite Groups, Chelsea Publishing, New York (1980),9999MR99999 0569209 . (1980) Zbl0463.20012MR0569209
  6. Guo, W., Structure Theory for Canonical Classes of Finite Groups, Springer, Berlin (2015),9999DOI99999 10.1007/978-3-662-45747-4 . (2015) Zbl1343.20021MR3331254
  7. Guo, W., Shum, K.-P., Skiba, A. N., X -quasinormal subgroups, Sib. Math. J. 48 (2007), 593-605 9999DOI99999 10.1007/s11202-007-0061-x . (2007) Zbl1153.20304MR2355370
  8. He, X., Li, Y., Wang, Y., On weakly S S -permutable subgroups of a finite group, Publ. Math. Debr. 77 (2010), 65-77 9999DOI99999 10.5486/pmd.2010.4565 . (2010) Zbl1214.20027MR2675734
  9. Huppert, B., Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften 134. Springer, Berlin (1967), German 9999DOI99999 10.1007/978-3-642-64981-3 . (1967) Zbl0217.07201MR0224703
  10. Kegel, O. H., Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), 205-221 German 9999DOI99999 10.1007/BF01195169 . (1962) Zbl0102.26802MR0147527
  11. Li, B., On Π -property and Π -normality of subgroups of finite groups, J. Algebra 334 (2011), 321-337 9999DOI99999 10.1016/j.jalgebra.2010.12.018 . (2011) Zbl1248.20020MR2787667
  12. Li, S., He, X., 10.1080/00927870701509370, Commun. Algebra 36 (2008), 2333-2340. (2008) Zbl1146.20015MR2418390DOI10.1080/00927870701509370
  13. Li, S., Shen, Z., Liu, J., Liu, X., The influence of SS-quasinormality of some subgroups on the structure of finite groups, J. Algebra 319 (2008), 4275-4287 9999DOI99999 10.1016/j.jalgebra.2008.01.030 . (2008) Zbl1152.20019MR2407900
  14. Li, Y. M., He, X. L., Wang, Y. M., On s -semipermutable subgroups of finite groups, Acta Math. Sin., Engl. Ser. 26 (2010), 2215-2222 9999DOI99999 10.1007/s10114-010-7609-6 . (2010) Zbl1209.20018MR2727302
  15. Li, Y., Miao, L., p -hypercyclically embedding and Π -property of subgroups of finite groups, Commun. Algebra 45 (2017), 3468-3474 9999DOI99999 10.1080/00927872.2016.1236939 . (2017) Zbl1371.20016MR3609352
  16. Li, Y., Qiao, S., Su, N., Wang, Y., On weakly s-semipermutable subgroups of finite groups, J. Algebra 371 (2012), 250-261 9999DOI99999 10.1016/j.jalgebra.2012.06.025 . (2012) Zbl1269.20020MR2975395
  17. Liu, J., Li, S., Shen, Z., Liu, X., Finite groups with some CAP-subgroups, Indian J. Pure Appl. Math. 42 (2011), 145-156 9999DOI99999 10.1007/s13226-011-0009-5 . (2011) Zbl1309.20011MR2823263
  18. Lu, J., Li, S., On S -semipermutable subgroups of finite groups, J. Math. Res. Expo. 29 (2009), 985-991 9999DOI99999 10.3770/j.issn:1000-341X.2009.06.005 . (2009) Zbl1212.20037MR2590215
  19. Skiba, A. N., On weakly s -permutable subgroups of finite groups, J. Algebra 315 (2007), 192-209 9999DOI99999 10.1016/j.jalgebra.2007.04.025 . (2007) Zbl1130.20019MR2344341
  20. Su, N., Li, Y., Wang, Y., A criterion of p -hypercyclically embedded subgroups of finite groups, J. Algebra 400 (2014), 82-93 9999DOI99999 10.1016/j.jalgebra.2013.11.007 . (2014) Zbl1300.20030MR3147365
  21. Wang, Y., C -normality of groups and its properties, J. Algebra 180 (1996), 954-965 9999DOI99999 10.1006/jabr.1996.0103 . (1996) Zbl0847.20010MR1379219
  22. Wang, Y., Wei, H., c -normality of groups and its properties, Algebr. Represent. Theory 16 (2013), 193-204 9999DOI99999 10.1007/s10468-011-9301-7 . (2013) Zbl1266.20020MR3018185
  23. Zhong, G., Lin, S.-X., On c -normal subgroups of finite groups, J. Algebra Appl. 16 (2017), Article ID 1750160, 11 pages 9999DOI99999 10.1142/S0219498817501602 . (2017) Zbl1396.20013MR3661627

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.