Exponential expressivity of neural networks on Gevrey classes with point singularities
Joost A. A. Opschoor; Christoph Schwab
Applications of Mathematics (2024)
- Volume: 69, Issue: 5, page 695-724
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topOpschoor, Joost A. A., and Schwab, Christoph. "Exponential expressivity of ${\rm ReLU}^k$ neural networks on Gevrey classes with point singularities." Applications of Mathematics 69.5 (2024): 695-724. <http://eudml.org/doc/299319>.
@article{Opschoor2024,
abstract = {We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains $\{\rm D\} \subset \mathbb \{R\}^d$, $d=2,3$. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in $\{\rm D\}$, comprising the countably-normed spaces of I. M. Babuška and B. Q. Guo. As intermediate result, we prove that continuous, piecewise polynomial high order (“$p$-version”) finite elements with elementwise polynomial degree $p\in \mathbb \{N\} $ on arbitrary, regular, simplicial partitions of polyhedral domains $\{\rm D\} \subset \mathbb \{R\}^d$, $d\ge 2$, can be exactly emulated by neural networks combining ReLU and ReLU$^2$ activations. On shape-regular, simplicial partitions of polytopal domains $\{\rm D\}$, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the $hp$ finite element space of I. M. Babuška and B. Q. Guo.},
author = {Opschoor, Joost A. A., Schwab, Christoph},
journal = {Applications of Mathematics},
keywords = {neural network; $hp$-finite element method; singularities; Gevrey regularity; exponential convergence},
language = {eng},
number = {5},
pages = {695-724},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exponential expressivity of $\{\rm ReLU\}^k$ neural networks on Gevrey classes with point singularities},
url = {http://eudml.org/doc/299319},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Opschoor, Joost A. A.
AU - Schwab, Christoph
TI - Exponential expressivity of ${\rm ReLU}^k$ neural networks on Gevrey classes with point singularities
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 5
SP - 695
EP - 724
AB - We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains ${\rm D} \subset \mathbb {R}^d$, $d=2,3$. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in ${\rm D}$, comprising the countably-normed spaces of I. M. Babuška and B. Q. Guo. As intermediate result, we prove that continuous, piecewise polynomial high order (“$p$-version”) finite elements with elementwise polynomial degree $p\in \mathbb {N} $ on arbitrary, regular, simplicial partitions of polyhedral domains ${\rm D} \subset \mathbb {R}^d$, $d\ge 2$, can be exactly emulated by neural networks combining ReLU and ReLU$^2$ activations. On shape-regular, simplicial partitions of polytopal domains ${\rm D}$, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the $hp$ finite element space of I. M. Babuška and B. Q. Guo.
LA - eng
KW - neural network; $hp$-finite element method; singularities; Gevrey regularity; exponential convergence
UR - http://eudml.org/doc/299319
ER -
References
top- Arora, R., Basu, A., Mianjy, P., Mukherjee, A., 10.48550/arXiv.1611.01491, Available at https://arxiv.org/abs/1611.01491 (2018), 17 pages. (2018) DOI10.48550/arXiv.1611.01491
- Babuška, I., Guo, B. Q., 10.1137/0519014, SIAM J. Math. Anal. 19 (1988), 172-203. (1988) Zbl0647.35021MR0924554DOI10.1137/0519014
- Babuška, I., Guo, B. Q., 10.1137/0725048, SIAM J. Numer. Anal. 25 (1988), 837-861. (1988) Zbl0655.65124MR0954788DOI10.1137/0725048
- Babuška, I., Guo, B. Q., 10.1137/0520054, SIAM J. Math. Anal. 20 (1989), 763-781. (1989) Zbl0706.35028MR1000721DOI10.1137/0520054
- Babuška, I., Guo, B. Q., 10.1016/0045-7825(95)00946-9, Comput. Methods Appl. Mech. Eng. 133 (1996), 319-346. (1996) Zbl0882.65096MR1399640DOI10.1016/0045-7825(95)00946-9
- Banjai, L., Melenk, J. M., Schwab, C., 10.1007/s00211-022-01329-5, Numer. Math. 153 (2023), 1-47. (2023) Zbl1511.65117MR4530200DOI10.1007/s00211-022-01329-5
- Banjai, L., Melenk, J. M., Schwab, C., 10.1093/imanum/drac070, IMA J. Numer. Anal. 43 (2023), 3282-3325. (2023) Zbl07800835MR4673336DOI10.1093/imanum/drac070
- Bao, G., Hu, G., Liu, D., 10.1016/j.jcp.2012.04.002, J. Comput. Phys. 231 (2012), 4967-4979. (2012) Zbl1245.65125DOI10.1016/j.jcp.2012.04.002
- Bolley, P., Dauge, M., Camus, J., 10.1080/03605308508820383, Commun. Partial Differ. Equations 10 (1985), 391-431 French. (1985) Zbl0573.35024MR0784683DOI10.1080/03605308508820383
- Cancès, E., Chakir, R., Maday, Y., 10.1007/s10915-010-9358-1, J. Sci. Comput. 45 (2010), 90-117. (2010) Zbl1203.65237MR2679792DOI10.1007/s10915-010-9358-1
- Chemin, J.-Y., 10.1093/oso/9780198503972.001.0001, Oxford Lecture Series in Mathematics and Its Applications 14. Clarendon Press, New York (1998). (1998) Zbl0927.76002MR1688875DOI10.1093/oso/9780198503972.001.0001
- Chen, Q., Babuška, I., 10.1016/0045-7825(96)01051-1, Comput. Methods Appl. Mech. Eng. 137 (1996), 89-94. (1996) Zbl0877.65004MR1420062DOI10.1016/0045-7825(96)01051-1
- Costabel, M., Dauge, M., Nicaise, S., 10.1051/m2an:1999155, M2AN, Math. Model. Numer. Anal. 33 (1999), 627-649. (1999) Zbl0937.78003MR1713241DOI10.1051/m2an:1999155
- Costabel, M., Dauge, M., Nicaise, S., 10.1142/S0218202512500157, Math. Models Methods Appl. Sci. 22 (2012), Article ID 1250015, 63 pages. (2012) Zbl1257.35056MR2928103DOI10.1142/S0218202512500157
- Dubiner, M., 10.1007/BF01060030, J. Sci. Comput. 6 (1991), 345-390. (1991) Zbl0742.76059MR1154903DOI10.1007/BF01060030
- Elbrächter, D., Grohs, P., Jentzen, A., Schwab, C., 10.1007/s00365-021-09541-6, Constr. Approx. 55 (2022), 3-71. (2022) Zbl1500.35009MR4376559DOI10.1007/s00365-021-09541-6
- Ern, A., Guermond, J.-L., 10.1007/978-3-030-56341-7, Texts in Applied Mathematics 72. Springer, Cham (2021). (2021) Zbl1476.65003MR4242224DOI10.1007/978-3-030-56341-7
- Faustmann, M., Marcati, C., Melenk, J. M., Schwab, C., 10.1137/22M152493X, SIAM J. Numer. Anal. 61 (2023), 2601-2622. (2023) Zbl1533.65224MR4667264DOI10.1137/22M152493X
- Feischl, M., Schwab, C., 10.1007/s00211-019-01085-z, Numer. Math. 144 (2020), 323-346. (2020) Zbl1433.65290MR4057425DOI10.1007/s00211-019-01085-z
- Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Sørensen, T. Ø., 10.1088/1751-8113/42/31/315208, J. Phys. A. Math. Theor. 42 (2009), Article ID 315208, 11 pages. (2009) Zbl1181.35282MR2521310DOI10.1088/1751-8113/42/31/315208
- Guo, B., The - Version of Finite Element Method in Two Dimensions. Mathematical Theory and Computational Experience: Ph.D. Thesis, University of Maryland, College Park (1985). (1985) MR2634330
- Guo, B. Q., Babuška, I., 10.1006/aama.1993.1016, Adv. Appl. Math. 14 (1993), 307-347. (1993) Zbl0790.35028MR1228743DOI10.1006/aama.1993.1016
- Guo, B., Babuška, I., 10.1017/S0308210500023520, Proc. R. Soc. Edinb., Sect. A 127 (1997), 77-126. (1997) Zbl0874.35019MR1433086DOI10.1017/S0308210500023520
- Guo, B., Babuška, I., 10.1017/S0308210500029899, Proc. R. Soc. Edinb., Sect. A 127 (1997), 517-545. (1997) Zbl0884.35022MR1453280DOI10.1017/S0308210500029899
- Guo, B., Schwab, C., 10.1016/j.cam.2005.02.018, J. Comput. Appl. Math. 190 (2006), 487-519. (2006) Zbl1121.35098MR2209521DOI10.1016/j.cam.2005.02.018
- He, J., Li, L., Xu, J., Zheng, C., 10.4208/jcm.1901-m2018-0160, J. Comput. Math. 38 (2020), 502-527. (2020) Zbl1463.68072MR4087799DOI10.4208/jcm.1901-m2018-0160
- He, J., Xu, J., 10.48550/arXiv.2312.14276, Available at https://arxiv.org/abs/2312.14276 (2024), 29 pages. (2024) DOI10.48550/arXiv.2312.14276
- He, Y., Marcati, C., Schwab, C., 10.1137/22M1527428, SIAM J. Math. Anal. 56 (2024), 2488-2520. (2024) Zbl07849793MR4719953DOI10.1137/22M1527428
- Herrmann, L., Opschoor, J. A. A., Schwab, C., 10.1007/s10915-021-01718-2, J. Sci. Comput. 90 (2022), Article ID 75, 37 pages. (2022) Zbl1500.41002MR4362469DOI10.1007/s10915-021-01718-2
- Hesthaven, J. S., 10.1137/S003614299630587X, SIAM J. Numer. Anal. 35 (1998), 655-676. (1998) Zbl0933.41004MR1618874DOI10.1137/S003614299630587X
- Holm, B., Wihler, T. P., 10.1007/s00211-017-0918-2, Numer. Math. 138 (2018), 767-799. (2018) Zbl1453.65118MR3767700DOI10.1007/s00211-017-0918-2
- Li, B., Tang, S., Yu, H., 10.4208/cicp.OA-2019-0168, Commun. Comput. Phys. 27 (2020), 379-411. (2020) Zbl1474.65031MR4040947DOI10.4208/cicp.OA-2019-0168
- Longo, M., Opschoor, J. A. A., Disch, N., Schwab, C., Zech, J., 10.1016/j.neunet.2023.06.008, Neural Netw. 165 (2023), 721-739. (2023) Zbl1532.65083DOI10.1016/j.neunet.2023.06.008
- Maday, Y., Marcati, C., 10.1142/S0218202519500295, Math. Models Methods Appl. Sci. 29 (2019), 1585-1617. (2019) Zbl1431.65209MR3986800DOI10.1142/S0218202519500295
- Marcati, C., Opschoor, J. A. A., Petersen, P. C., Schwab, C., 10.1007/s10208-022-09565-9, Found. Comput. Math. 23 (2023), 1043-1127. (2023) Zbl1519.35253MR4603228DOI10.1007/s10208-022-09565-9
- Marcati, C., Schwab, C., 10.1137/19M1247334, SIAM J. Math. Anal. 52 (2020), 2945-2968. (2020) Zbl1447.35252MR4113068DOI10.1137/19M1247334
- Melenk, J. M., 10.1007/b84212, Lecture Notes in Mathematics 1796. Springer, Berlin (2002). (2002) Zbl1021.65055MR1939620DOI10.1007/b84212
- Melenk, J. M., Schwab, C., 10.1137/S0036142997317602, SIAM J. Numer. Anal. 35 (1998), 1520-1557. (1998) Zbl0972.65093MR1626030DOI10.1137/S0036142997317602
- Opschoor, J. A. A., 10.3929/ethz-b-000614671, ETH, Zürich (2023). (2023) DOI10.3929/ethz-b-000614671
- Opschoor, J. A. A., Petersen, P. C., Schwab, C., 10.1142/S0219530519410136, Anal. Appl., Singap. 18 (2020), 715-770. (2020) Zbl1452.65354MR4131037DOI10.1142/S0219530519410136
- Opschoor, J. A. A., Schwab, C., 10.1016/j.camwa.2024.06.008, Comput. Math. Appl. 169 (2024), 142-162. (2024) Zbl7894795MR4768195DOI10.1016/j.camwa.2024.06.008
- Opschoor, J. A. A., Schwab, C., Xenophontos, C., 10.48550/arXiv.2401.06656, Available at https://arxiv.org/abs/2401.06656 (2024), 39 pages. (2024) DOI10.48550/arXiv.2401.06656
- Opschoor, J. A. A., Schwab, C., Zech, J., 10.1007/s00365-021-09542-5, Constr. Approx. 55 (2022), 537-582. (2022) Zbl1500.41008MR4376568DOI10.1007/s00365-021-09542-5
- Petersen, P., Voigtlaender, F., 10.1016/j.neunet.2018.08.019, Neural Netw. 108 (2018), 296-330. (2018) Zbl1434.68516DOI10.1016/j.neunet.2018.08.019
- Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P., Mikhailov, A. P., 10.1515/9783110889864.535, de Gruyter Expositions in Mathematics 19. Walter De Gruyter, Berlin (1995). (1995) Zbl1020.35001MR1330922DOI10.1515/9783110889864.535
- Schwab, C., - and -Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998). (1998) Zbl0910.73003MR1695813
- Szabó, B., Babuška, I., Finite Element Analysis, John Wiley & Sons, New York (1991). (1991) Zbl0792.73003MR1164869
- Yang, Y., Wu, Y., Yang, H., Xiang, Y., 10.48550/arXiv.2310.10766, Available at https://arxiv.org/abs/2310.10766 (2023), 32 pages. (2023) DOI10.48550/arXiv.2310.10766
- Yarotsky, D., 10.1016/j.neunet.2017.07.002, Neural Netw. 94 (2017), 103-114. (2017) Zbl1429.68260DOI10.1016/j.neunet.2017.07.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.