A Kalmár-style completeness proof for the logics of the hierarchy
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 4, page 485-509
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFernández, Víctor. "A Kalmár-style completeness proof for the logics of the hierarchy ${\mathbb {I}}^n {\mathbb {P}}^k$." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 485-509. <http://eudml.org/doc/299327>.
@article{Fernández2023,
abstract = {The logics of the family $\{\mathbb \{I\}\}^n \{\mathbb \{P\}\}^k$:=$\lbrace \{ I^n P^k\}\rbrace _\{(n,k) \in \omega ^2\}$ are formally defined by means of finite matrices, as a simultaneous generalization of the weakly-intuitionistic logic $I^1$ and of the paraconsistent logic $P^1$. It is proved that this family can be naturally ordered, and it is shown a sound and complete axiomatics for each logic of the form $I^n P^k$. The involved completeness proof showed here is obtained by means of a generalization of the well-known Kalmár’s method, usually applied for many-valued logics.},
author = {Fernández, Víctor},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {mathematical logic; Kalmár's completeness proof; many-valued logic},
language = {eng},
number = {4},
pages = {485-509},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A Kalmár-style completeness proof for the logics of the hierarchy $\{\mathbb \{I\}\}^n \{\mathbb \{P\}\}^k$},
url = {http://eudml.org/doc/299327},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Fernández, Víctor
TI - A Kalmár-style completeness proof for the logics of the hierarchy ${\mathbb {I}}^n {\mathbb {P}}^k$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 485
EP - 509
AB - The logics of the family ${\mathbb {I}}^n {\mathbb {P}}^k$:=$\lbrace { I^n P^k}\rbrace _{(n,k) \in \omega ^2}$ are formally defined by means of finite matrices, as a simultaneous generalization of the weakly-intuitionistic logic $I^1$ and of the paraconsistent logic $P^1$. It is proved that this family can be naturally ordered, and it is shown a sound and complete axiomatics for each logic of the form $I^n P^k$. The involved completeness proof showed here is obtained by means of a generalization of the well-known Kalmár’s method, usually applied for many-valued logics.
LA - eng
KW - mathematical logic; Kalmár's completeness proof; many-valued logic
UR - http://eudml.org/doc/299327
ER -
References
top- Blok W. J., Pigozzi D., Algebraizable logics, Mem. Amer. Math. Soc. 77 (1989), no. 396, vi+78 pages. MR0973361
- Carnielli W. A., Coniglio M. E., Marcos J., Logics of formal inconsistency, in Handbook of Philosophical Logic, Springer, London, 2007, pages 1–93.
- Carnielli W. A., Marcos J., A taxonomy of -systems, in Paraconsistency: The Logical Way to the Inconsistent, Proc. of the 2nd World Congress on Paraconsistency, São Sebstiãno, 2000, Lecture Notes in Pure and Appl. Math., 228, Marcel Dekker, New York, 2002, pages 1–94. MR2008227
- Ciuciura J., A lattice of the paracomplete calculi, Log. Issled. 26 (2020), no. 1, 110–123. MR4153478
- Ciuciura J., 10.1093/logcom/exaa030, J. of Logic Comput. 30 (2020), no. 5, 1109–1124. MR4122505DOI10.1093/logcom/exaa030
- da Costa N. C. A., On the theory of inconsistent formal systems, Notre Dame J. Formal Logic 15 (1974), 497–510. MR0354361
- da Costa N. C. A., Inconsistent Formal Systems, Habilitation Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 1993 (Portuguese). MR1258510
- Fernández V., Society Semantics for -valued Logics, Master's Thesis, UNICAMP, Brazil, 2001 (Portuguese).
- Fernández V., Fibring of Logics in the Leibniz Hierarchy, Ph.D. Thesis, UNICAMP, Brazil, 2005 (Portuguese).
- Fernández V. L., Coniglio M. E., 10.3166/jancl.13.21-46, Journal of Applied Non-Classical Logics 13 (2003), no. 1, 21–46. DOI10.3166/jancl.13.21-46
- Henkin L., 10.2307/2268976, J. Symbolic Logic 14 (1949), 42–48. MR0033780DOI10.2307/2268976
- L'abbé M., 10.2307/2268664, J. Symbolic Logic 16 (1951), 43–45. MR0040235DOI10.2307/2268664
- Lewin R. A., Mikenberg I. F., Schwarze M. G., Algebraization of paraconsistent logic , J. Non-Classical Logic 7 (1990), no. 1–2, 79–88. MR1209367
- Lewin R. A., Mikenberg I. F, Schwarze M. G., algebras, Studia Logica 53 (1994), no. 1, 21–28. MR1271128
- Lopes dos Santos L., Constructive completeness proofs for positive propositional calculi, in Proc. of the Third Brazilian Conf. on Mathematical Logic, Inst. Math., Fed. Univ. Pernambuco, Recife, 1979, (A. Arruda, N. da Costa, A. Sette eds.), Soc. Brasil. Lógica, São Paulo, 1980, pages 199–209. MR0603668
- Mendelson E., Introduction to Mathematical Logic, Chapman and Hall, London, 1997. MR1630547
- Olvera Badillo A., Revisiting Kalmár completeness metaproof, Proc. of the 6th Latin American Workshop on Logic/Languages, Algorithms and New Methods of Reasoning Puebla, Mexico, 2010, vol. 677 of CEUR Workshop Proceedings, 2010, pages 99–106.
- Pynko A. P., 10.1007/BF01058534, Studia Logica 54 (1995), no. 1, 89–128. MR1317076DOI10.1007/BF01058534
- Ramos F. M, Fernández V. L., 10.3166/jancl.19.183-209, J. Appl. Non-Classical Logics 19 (2009), no. 2, 183–209. MR2569575DOI10.3166/jancl.19.183-209
- Sette A. M., On the propositional calculus , Math. Japon. 18 (1973), 173–180. MR0373820
- Sette A.-M., Carnielli W. A., 10.1007/BF01053037, Studia Logica 55 (1995), no. 1, 181–203. MR1348842DOI10.1007/BF01053037
- Wójcicki R., Theory of Logical Calculi, Basic Theory of Consequence Operations, Synthese Library, 199, Kluwer Academic Publishers Group, Dordrecht, 1988. MR1009788
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.