Counting paths between points on a circle
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 4, page 511-517
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKortezov, Ivaylo. "Counting paths between points on a circle." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 511-517. <http://eudml.org/doc/299328>.
@article{Kortezov2023,
abstract = {The paper deals with counting sets of given magnitude whose elements are self-avoiding paths with nodes from a fixed set of points on a circle. Some of the obtained formulae provide new properties of entries in ``The On-line Encyclopaedia of Integer Sequences", while others generate new entries therein.},
author = {Kortezov, Ivaylo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {enumerative combinatorics; self-avoiding path; convex polygon},
language = {eng},
number = {4},
pages = {511-517},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Counting paths between points on a circle},
url = {http://eudml.org/doc/299328},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Kortezov, Ivaylo
TI - Counting paths between points on a circle
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 511
EP - 517
AB - The paper deals with counting sets of given magnitude whose elements are self-avoiding paths with nodes from a fixed set of points on a circle. Some of the obtained formulae provide new properties of entries in ``The On-line Encyclopaedia of Integer Sequences", while others generate new entries therein.
LA - eng
KW - enumerative combinatorics; self-avoiding path; convex polygon
UR - http://eudml.org/doc/299328
ER -
References
top- Kortezov I., 10.53656/math2022-6-4-set, Mathematics and Informatics 65 (2022), no. 6, 546–555. DOI10.53656/math2022-6-4-set
- Kortezov I., Sets of paths between vertices of a polygon, Mathematics Competitions 35 (2022), no. 2, 35–43.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A001792.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A261064.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A308914. MR1269167
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A332426.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A359404.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A359405.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A360021.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A360275.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A360276.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A360715.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A360716.
- Sloane N. J. A., The On-line Encyclopaedia of Integer Sequences, https://oeis.org/A360717.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.