Partitioning planar graph of girth 5 into two forests with maximum degree 4
Min Chen; André Raspaud; Weifan Wang; Weiqiang Yu
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 355-366
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Min, et al. "Partitioning planar graph of girth 5 into two forests with maximum degree 4." Czechoslovak Mathematical Journal 74.2 (2024): 355-366. <http://eudml.org/doc/299335>.
@article{Chen2024,
abstract = {Given a graph $G=(V, E)$, if we can partition the vertex set $V$ into two nonempty subsets $V_1$ and $V_2$ which satisfy $\Delta (G[V_1])\le d_1$ and $\Delta (G[V_2])\le d_2$, then we say $G$ has a $(\Delta _\{d_\{1\}\},\Delta _\{d_\{2\}\})$-partition. And we say $G$ admits an $(F_\{d_\{1\}\}, F_\{d_\{2\}\})$-partition if $G[V_1]$ and $G[V_2]$ are both forests whose maximum degree is at most $d_\{1\}$ and $d_\{2\}$, respectively. We show that every planar graph with girth at least 5 has an $(F_4, F_4)$-partition.},
author = {Chen, Min, Raspaud, André, Wang, Weifan, Yu, Weiqiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {vertex partition; girth; forest; maximum degree},
language = {eng},
number = {2},
pages = {355-366},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Partitioning planar graph of girth 5 into two forests with maximum degree 4},
url = {http://eudml.org/doc/299335},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Chen, Min
AU - Raspaud, André
AU - Wang, Weifan
AU - Yu, Weiqiang
TI - Partitioning planar graph of girth 5 into two forests with maximum degree 4
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 355
EP - 366
AB - Given a graph $G=(V, E)$, if we can partition the vertex set $V$ into two nonempty subsets $V_1$ and $V_2$ which satisfy $\Delta (G[V_1])\le d_1$ and $\Delta (G[V_2])\le d_2$, then we say $G$ has a $(\Delta _{d_{1}},\Delta _{d_{2}})$-partition. And we say $G$ admits an $(F_{d_{1}}, F_{d_{2}})$-partition if $G[V_1]$ and $G[V_2]$ are both forests whose maximum degree is at most $d_{1}$ and $d_{2}$, respectively. We show that every planar graph with girth at least 5 has an $(F_4, F_4)$-partition.
LA - eng
KW - vertex partition; girth; forest; maximum degree
UR - http://eudml.org/doc/299335
ER -
References
top- Appel, K., Haken, W., 10.1215/ijm/1256049011, Ill. J. Math. 21 (1977), 429-490. (1977) Zbl0387.05009MR0543792DOI10.1215/ijm/1256049011
- Appel, K., Haken, W., 10.1215/ijm/1256049012, Ill. J. Math. 21 (1977), 491-567. (1977) Zbl0387.05010MR0543793DOI10.1215/ijm/1256049012
- Borodin, O. V., A proof of Grünbaum's conjecture on the acyclic 5-colorability of planar graphs, Dokl. Akad. Nauk SSSR 231 (1976), 18-20 Russian. (1976) Zbl0363.05031MR0447031
- Borodin, O. V., Glebov, A. N., On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph, Diskretn. Anal. Issled. Oper., Ser. 1 8 (2001), 34-53 Russian. (2001) Zbl1012.05133MR1918259
- Borodin, O. V., Ivanova, A. O., Near-proper vertex 2-colorings of sparse graphs, Diskretn. Anal. Issled. Oper. 16 (2009), 16-20 Russian. (2009) Zbl1249.05110MR2574306
- Borodin, O. V., Kostochka, A. V., 10.1134/S0037446611050041, Sib. Math. J. 52 (2011), 796-801. (2011) Zbl1232.05073MR2908122DOI10.1134/S0037446611050041
- Borodin, O. V., Kostochka, A. V., 10.1016/j.jctb.2013.10.002, J. Comb. Theory, Ser. B 104 (2014), 72-80. (2014) Zbl1282.05041MR3132745DOI10.1016/j.jctb.2013.10.002
- Chartrand, G., Kronk, H. V., 10.1112/jlms/s1-44.1.612, J. Lond. Math. Soc. 44 (1969), 612-616. (1969) Zbl0175.50505MR0239996DOI10.1112/jlms/s1-44.1.612
- Chen, M., Raspaud, A., Wang, W., 10.1016/j.ejc.2011.09.017, Eur. J. Comb. 33 (2012), 905-923. (2012) Zbl1250.05062MR2889524DOI10.1016/j.ejc.2011.09.017
- Chen, M., Yu, W., Wang, W., 10.1016/j.amc.2018.01.003, Appl. Math. Comput. 326 (2018), 117-123. (2018) Zbl1426.05114MR3759461DOI10.1016/j.amc.2018.01.003
- Choi, H., Choi, I., Jeong, J., Suh, G., 10.1002/jgt.22039, J. Graph Theory 84 (2017), 521-535. (2017) Zbl1359.05099MR3623392DOI10.1002/jgt.22039
- Choi, I., Raspaud, A., 10.1016/j.disc.2014.11.012, Discrete Math. 338 (2015), 661-667. (2015) Zbl1305.05072MR3300755DOI10.1016/j.disc.2014.11.012
- Dross, F., Montassier, M., Pinlou, A., 10.1016/j.ejc.2017.06.014, Eur. J. Comb. 66 (2017), 81-94. (2017) Zbl1369.05169MR3692138DOI10.1016/j.ejc.2017.06.014
- Feghali, C., Šámal, R., 10.1016/j.ejc.2023.103878, Eur. J. Comb. 116 (2024), Article ID 103878, 6 pages. (2024) Zbl07799827MR4666807DOI10.1016/j.ejc.2023.103878
- Havet, F., Sereni, J.-S., 10.1002/jgt.20155, J. Graph Theory 52 (2006), 181-199. (2006) Zbl1104.05026MR2230831DOI10.1002/jgt.20155
- Kim, J., Kostochka, A., Zhu, X., 10.1016/j.ejc.2014.05.003, Eur. J. Comb. 42 (2014), 26-48. (2014) Zbl1297.05083MR3240135DOI10.1016/j.ejc.2014.05.003
- Montassier, M., Ochem, P., 10.37236/3509, Electron. J. Comb. 22 (2015), Article ID P1.57, 13 pages. (2015) Zbl1308.05052MR3336571DOI10.37236/3509
- Poh, K. S., 10.1002/jgt.3190140108, J. Graph Theory 14 (1990), 73-75. (1990) Zbl0705.05016MR1037422DOI10.1002/jgt.3190140108
- Raspaud, A., Wang, W., 10.1016/j.ejc.2007.11.022, Eur. J. Comb. 29 (2008), 1064-1075. (2008) Zbl1144.05024MR2408378DOI10.1016/j.ejc.2007.11.022
- Zhang, M., Chen, M., Wang, Y., 10.1007/s10878-016-0010-3, J. Comb. Optim. 33 (2017), 847-865. (2017) Zbl1367.05054MR3619509DOI10.1007/s10878-016-0010-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.